1678 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			OpenEdge ABL
		
	
	
	
	
	
			
		
		
	
	
			1678 lines
		
	
	
	
		
			52 KiB
		
	
	
	
		
			OpenEdge ABL
		
	
	
	
	
	
.bp
 | 
						|
.AP "EM INTERPRETER"
 | 
						|
.nf
 | 
						|
.ft CW
 | 
						|
.lg 0
 | 
						|
.nr x \w'        '
 | 
						|
.ta \nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu +\nxu
 | 
						|
 | 
						|
{ This  is an interpreter for EM.  It serves as  the official machine
 | 
						|
  definition.  This interpreter must run on a machine which supports
 | 
						|
  arithmetic with words and memory offsets.
 | 
						|
 | 
						|
  Certain aspects of the definition are over specified.  In particular:
 | 
						|
 | 
						|
    1. The representation of  an  address on the stack  need not be the
 | 
						|
       numerical value of the memory location.
 | 
						|
 | 
						|
    2. The state of  the stack is not defined  after a trap has aborted
 | 
						|
       an instruction in the middle.  For example, it is officially un-
 | 
						|
       defined  whether the second  operand of an  ADD  instruction has
 | 
						|
       been popped  or  not  if the  first one is undefined ( -32768 or
 | 
						|
       unsigned 32768).
 | 
						|
 | 
						|
    3. The memory layout is implementation dependent. Only the most
 | 
						|
       basic checks are performed whenever memory is accessed.
 | 
						|
 | 
						|
    4. The representation of an integer or set on the stack is not fixed
 | 
						|
       in bit order.
 | 
						|
 | 
						|
    5. The format and existence of the procedure descriptors depends on
 | 
						|
       the implementation.
 | 
						|
 | 
						|
    6. The result of the compare operators  CMI etc.  are -1, 0  and  1
 | 
						|
       here, but other negative  and  positive values will do  and they
 | 
						|
       need not be the same each time.
 | 
						|
 | 
						|
    7. The shift count for SHL, SHR, ROL and ROR must be in the range 0
 | 
						|
       to object size in bits - 1.  The effect of a  count  not in this
 | 
						|
       range is undefined.
 | 
						|
}
 | 
						|
.bp
 | 
						|
{$i256} {$d+}
 | 
						|
program em(tables,prog,input,output);
 | 
						|
 | 
						|
label 8888,9999;
 | 
						|
 | 
						|
const
 | 
						|
  t15   = 32768;        { 2**15    }
 | 
						|
  t15m1 = 32767;        { 2**15 -1 }
 | 
						|
  t16   = 65536;        { 2**16    }
 | 
						|
  t16m1 = 65535;        { 2**16 -1 }
 | 
						|
  t31m1 = 2147483647;   { 2**31 -1 }
 | 
						|
 | 
						|
  wsize = 2;            { number of bytes in a word }
 | 
						|
  asize = 2;            { number of bytes in an address }
 | 
						|
  fsize = 4;            { number of bytes in a floating point number }
 | 
						|
  maxret =4;            { number of words in the return value area }
 | 
						|
 | 
						|
  signbit = t15;        { the power of two indicating the sign bit }
 | 
						|
  negoff  = t16;        { the next power of two }
 | 
						|
  maxsint = t15m1;      { the maximum signed integer }
 | 
						|
  maxuint = t16m1;      { the maximum unsigned integer }
 | 
						|
  maxdbl  = t31m1;      { the maximum double signed integer }
 | 
						|
  maxadr  = t16m1;      { the maximum address }
 | 
						|
  maxoffs = t15m1;      { the maximum offset from an address }
 | 
						|
  maxbitnr= 15;         { the number of the highest bit }
 | 
						|
 | 
						|
  lineadr = 0;          { address of the line number }
 | 
						|
  fileadr = 4;          { address of the file name }
 | 
						|
  maxcode = 8191;       { highest byte in code address space }
 | 
						|
  maxdata = 8191;       { highest byte in data address space }
 | 
						|
 | 
						|
  { format of status save area }
 | 
						|
  statd   = 4;          { how far is static link from lb }
 | 
						|
  dynd    = 2;          { how far is dynamic link from lb }
 | 
						|
  reta    = 0;          { how far is the return address from lb }
 | 
						|
  savsize = 4;          { size of save area in bytes }
 | 
						|
 | 
						|
  { procedure descriptor format }
 | 
						|
  pdlocs  = 0;          { offset for size of local variables in bytes }
 | 
						|
  pdbase  = asize;      { offset for the procedure base }
 | 
						|
  pdsize  = 4;          { size of procedure descriptor in bytes = 2*asize }
 | 
						|
 | 
						|
  { header words }
 | 
						|
  NTEXT   = 1;
 | 
						|
  NDATA   = 2;
 | 
						|
  NPROC   = 3;
 | 
						|
  ENTRY   = 4;
 | 
						|
  NLINE   = 5;
 | 
						|
  SZDATA  = 6;
 | 
						|
 | 
						|
  escape1 = 254;        { escape to secondary opcodes }
 | 
						|
  escape2 = 255;        { escape to tertiary opcodes }
 | 
						|
  undef   = signbit;    { the range of integers is -32767 to +32767 }
 | 
						|
 | 
						|
  { error codes }
 | 
						|
  EARRAY   =  0; ERANGE   =  1; ESET     =  2; EIOVFL   =  3; EFOVFL   =  4; 
 | 
						|
  EFUNFL   =  5; EIDIVZ   =  6; EFDIVZ   =  7; EIUND    =  8; EFUND    =  9; 
 | 
						|
  ECONV    = 10; ESTACK   = 16; EHEAP    = 17; EILLINS  = 18; EODDZ    = 19; 
 | 
						|
  ECASE    = 20; EMEMFLT  = 21; EBADPTR  = 22; EBADPC   = 23; EBADLAE  = 24;
 | 
						|
  EBADMON  = 25; EBADLIN  = 26; EBADGTO  = 27;
 | 
						|
.ne 20
 | 
						|
.bp
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                             Declarations                                  }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
type
 | 
						|
  bitval= 0..1;             { one bit }
 | 
						|
  bitnr=  0..maxbitnr;      { bits in machine words are numbered 0 to 15 }
 | 
						|
  byte=   0..255;           { memory is an array of bytes }
 | 
						|
  adr=    {0..maxadr} long; { the range of addresses }
 | 
						|
  word=   {0..maxuint} long;{ the range of unsigned integers }
 | 
						|
  offs=  -maxoffs..maxoffs; { the range of signed offsets from addresses }
 | 
						|
  size=   0..maxoffs;       { the range of sizes is the positive offsets }
 | 
						|
  sword= {-signbit..maxsint} long; { the range of signed integers }
 | 
						|
  full=  {-maxuint..maxuint} long; { intermediate results need this range }
 | 
						|
  double={-maxdbl..maxdbl} long;   { double precision range }
 | 
						|
  bftype= (andf,iorf,xorf); { tells which boolean operator needed }
 | 
						|
  insclass=(prim,second,tert); { tells which opcode table is in use }
 | 
						|
  instype=(implic,explic);  { does opcode have implicit or explicit operand }
 | 
						|
  iflags= (mini,short,sbit,wbit,zbit,ibit);
 | 
						|
  ifset=  set of iflags;
 | 
						|
 | 
						|
  mnem = ( NON,
 | 
						|
	   AAR, ADF, ADI, ADP, ADS, ADU,XAND, ASP, ASS, BEQ,
 | 
						|
	   BGE, BGT, BLE, BLM, BLS, BLT, BNE, BRA, CAI, CAL,
 | 
						|
	   CFF, CFI, CFU, CIF, CII, CIU, CMF, CMI, CMP, CMS,
 | 
						|
	   CMU, COM, CSA, CSB, CUF, CUI, CUU, DCH, DEC, DEE,
 | 
						|
	   DEL, DUP, DUS, DVF, DVI, DVU, EXG, FEF, FIF, FIL,
 | 
						|
	   GTO, INC, INE, INL, INN, IOR, LAE, LAL, LAR, LDC,
 | 
						|
	   LDE, LDF, LDL, LFR, LIL, LIM, LIN, LNI, LOC, LOE,
 | 
						|
	   LOF, LOI, LOL, LOR, LOS, LPB, LPI, LXA, LXL, MLF,
 | 
						|
	   MLI, MLU, MON, NGF, NGI, NOP, RCK, RET, RMI, RMU,
 | 
						|
	   ROL, ROR, RTT, SAR, SBF, SBI, SBS, SBU, SDE, SDF,
 | 
						|
	   SDL,XSET, SIG, SIL, SIM, SLI, SLU, SRI, SRU, STE,
 | 
						|
	   STF, STI, STL, STR, STS, TEQ, TGE, TGT, TLE, TLT,
 | 
						|
	   TNE, TRP, XOR, ZEQ, ZER, ZGE, ZGT, ZLE, ZLT, ZNE,
 | 
						|
	   ZRE, ZRF, ZRL);
 | 
						|
 | 
						|
  dispatch = record
 | 
						|
		iflag: ifset;
 | 
						|
		instr: mnem;
 | 
						|
		case instype of
 | 
						|
		implic: (implicit:sword);
 | 
						|
		explic: (ilength:byte);
 | 
						|
	     end;
 | 
						|
 | 
						|
 | 
						|
var
 | 
						|
  code: packed array[0..maxcode] of byte;      { code space }
 | 
						|
  data: packed array[0..maxdata] of byte;      { data space }
 | 
						|
  retarea: array[1..maxret ] of word;          { return area }
 | 
						|
  pc,lb,sp,hp,pd: adr;  { internal machine registers }
 | 
						|
  i: integer;           { integer scratch variable }
 | 
						|
  s,t :word;            { scratch variables }
 | 
						|
  sz:size;              { scratch variables }
 | 
						|
  ss,st: sword;         { scratch variables }
 | 
						|
  k :double;            { scratch variables }
 | 
						|
  j:size;               { scratch variable used as index }
 | 
						|
  a,b:adr;              { scratch variable used for addresses }
 | 
						|
  dt,ds:double;         { scratch variables for double precision }
 | 
						|
  rt,rs,x,y:real;       { scratch variables for real }
 | 
						|
  found:boolean;        { scratch }
 | 
						|
  opcode: byte;         { holds the opcode during execution }
 | 
						|
  iclass: insclass;     { true for escaped opcodes }
 | 
						|
  dispat: array[insclass,byte] of dispatch;
 | 
						|
  retsize:size;         { holds size of last LFR }
 | 
						|
  insr: mnem;           { holds the instruction number }
 | 
						|
  halted: boolean;      { normally false }
 | 
						|
  exitstatus:word;      { parameter of MON 1 }
 | 
						|
  ignmask:word;         { ignore mask for traps }
 | 
						|
  uerrorproc:adr;       { number of user defined error procedure }
 | 
						|
  intrap:boolean;       { Set when executing trap(), to catch recursive calls}
 | 
						|
  trapval:byte;         { Set to number of last trap }
 | 
						|
  header: array[1..8] of adr;
 | 
						|
 | 
						|
  tables: text;         { description of EM instructions }
 | 
						|
  prog: file of byte;   { program and initialized data }
 | 
						|
.ne 20
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                        Various check routines                             }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
{ Only the most basic checks are performed. These routines are inherently
 | 
						|
  implementation dependent. }
 | 
						|
 | 
						|
procedure trap(n:byte); forward;
 | 
						|
 | 
						|
procedure memadr(a:adr);
 | 
						|
begin if (a>maxdata) or ((a<sp) and (a>=hp)) then trap(EMEMFLT) end;
 | 
						|
 | 
						|
procedure wordadr(a:adr);
 | 
						|
begin memadr(a); if (a mod wsize<>0) then trap(EBADPTR) end;
 | 
						|
 | 
						|
procedure chkadr(a:adr; s:size);
 | 
						|
begin memadr(a); memadr(a+s-1); { assumption: size is ok }
 | 
						|
      if s<wsize
 | 
						|
      then begin if a mod s<>0  then trap(EBADPTR) end
 | 
						|
      else       if a mod wsize<>0 then trap(EBADPTR)
 | 
						|
end;
 | 
						|
 | 
						|
procedure newpc(a:double);
 | 
						|
begin if (a<0) or (a>maxcode) then trap(EBADPC); pc:=a end;
 | 
						|
 | 
						|
procedure newsp(a:adr);
 | 
						|
begin if (a>lb) or (a<hp) or (a mod wsize<>0) then trap(ESTACK); sp:=a end;
 | 
						|
 | 
						|
procedure newlb(a:adr);
 | 
						|
begin if (a<sp) or (a mod wsize<>0) then trap(ESTACK); lb:=a end;
 | 
						|
 | 
						|
procedure newhp(a:adr);
 | 
						|
begin if (a>sp) or (a>maxdata+1) or (a mod wsize<>0)
 | 
						|
      then trap(EHEAP)
 | 
						|
      else hp:=a
 | 
						|
end;
 | 
						|
 | 
						|
function argc(a:double):sword;
 | 
						|
begin if (a<-signbit) or (a>maxsint) then trap(EILLINS); argc:=a end;
 | 
						|
 | 
						|
function argd(a:double):double;
 | 
						|
begin if (a<-maxdbl) or (a>maxdbl) then trap(EILLINS); argd:=a end;
 | 
						|
 | 
						|
function argl(a:double):offs;
 | 
						|
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argl:=a end;
 | 
						|
 | 
						|
function argg(k:double):adr;
 | 
						|
begin if (k<0) or (k>maxadr) then trap(EILLINS); argg:=k end;
 | 
						|
 | 
						|
function argf(a:double):offs;
 | 
						|
begin if (a<-maxoffs) or (a>maxoffs) then trap(EILLINS); argf:=a end;
 | 
						|
 | 
						|
function argn(a:double):word;
 | 
						|
begin if (a<0) or (a>maxuint) then trap(EILLINS); argn:=a end;
 | 
						|
 | 
						|
function args(a:double):size;
 | 
						|
begin if (a<=0) or (a>maxoffs)
 | 
						|
	then trap(EODDZ)
 | 
						|
	else if (a mod wsize)<>0 then trap(EODDZ);
 | 
						|
      args:=a ;
 | 
						|
end;
 | 
						|
 | 
						|
function argz(a:double):size;
 | 
						|
begin if (a<0) or (a>maxoffs)
 | 
						|
	then trap(EODDZ)
 | 
						|
	else if (a mod wsize)<>0 then trap(EODDZ);
 | 
						|
      argz:=a ;
 | 
						|
end;
 | 
						|
 | 
						|
function argo(a:double):size;
 | 
						|
begin if (a<=0) or (a>maxoffs)
 | 
						|
	then trap(EODDZ)
 | 
						|
	else if (a mod wsize<>0) and (wsize mod a<>0) then trap(EODDZ);
 | 
						|
      argo:=a ;
 | 
						|
end;
 | 
						|
 | 
						|
function argw(a:double):size;
 | 
						|
begin if (a<=0) or (a>maxoffs) or (a>maxuint)
 | 
						|
	then trap(EODDZ)
 | 
						|
	else if (a mod wsize)<>0 then trap(EODDZ);
 | 
						|
      argw:=a ;
 | 
						|
end;
 | 
						|
 | 
						|
function argp(a:double):size;
 | 
						|
begin if (a<0) or (a>=header[NPROC]) then trap(EILLINS); argp:=a end;
 | 
						|
 | 
						|
function argr(a:double):word;
 | 
						|
begin if (a<0) or (a>2) then trap(EILLINS); argr:=a end;
 | 
						|
 | 
						|
procedure argwf(s:double);
 | 
						|
begin if argw(s)<>fsize then trap(EILLINS) end;
 | 
						|
 | 
						|
function szindex(s:double):integer;
 | 
						|
begin s:=argw(s); if (s mod wsize <> 0) or (s>2*wsize) then trap(EILLINS);
 | 
						|
      szindex:=s div wsize
 | 
						|
end;
 | 
						|
 | 
						|
function locadr(l:double):adr;
 | 
						|
begin l:=argl(l); if l<0 then locadr:=lb+l else locadr:=lb+l+savsize end;
 | 
						|
 | 
						|
function signwd(w:word):sword;
 | 
						|
begin if w = undef then trap(EIUND);
 | 
						|
      if w >= signbit then signwd:=w-negoff else signwd:=w
 | 
						|
end;
 | 
						|
 | 
						|
function dosign(w:word):sword;
 | 
						|
begin if w >= signbit then dosign:=w-negoff else dosign:=w end;
 | 
						|
 | 
						|
function unsign(w:sword):word;
 | 
						|
begin if w<0 then unsign:=w+negoff else unsign:=w end;
 | 
						|
 | 
						|
function chopw(dw:double):word;
 | 
						|
begin chopw:=dw mod negoff end;
 | 
						|
 | 
						|
function fitsw(w:full;trapno:byte):word;
 | 
						|
{ checks whether value fits in signed word, returns unsigned representation}
 | 
						|
begin
 | 
						|
  if (w>maxsint) or (w<-signbit) then
 | 
						|
    begin trap(trapno);
 | 
						|
      if w<0 then fitsw:=negoff- (-w)mod negoff
 | 
						|
	     else fitsw:=w mod negoff;
 | 
						|
    end
 | 
						|
  else fitsw:=unsign(w)
 | 
						|
end;
 | 
						|
 | 
						|
function fitd(w:full):double;
 | 
						|
begin
 | 
						|
  if abs(w) > maxdbl then trap(ECONV);
 | 
						|
  fitd:=w
 | 
						|
end;
 | 
						|
.ne 20
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                        Memory access routines                             }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
{ memw returns a machine word as an unsigned integer
 | 
						|
  memb returns a single byte as a positive integer: 0 <= memb <= 255
 | 
						|
  mems(a,s) fetches an object smaller than a word and returns a word
 | 
						|
  store(a,v) stores the word v at machine address a
 | 
						|
  storea(a,v) stores the address v at machine address a
 | 
						|
  storeb(a,b) stores the byte b at machine address a
 | 
						|
  stores(a,s,v) stores the s least significant bytes of a word at address a
 | 
						|
  memi returns an offset from the instruction space
 | 
						|
       Note that the procedure descriptors are part of instruction space.
 | 
						|
  nextpc returns the next byte addressed by pc, incrementing pc
 | 
						|
 | 
						|
  lino changes the line number word.
 | 
						|
  filna changes the pointer to the file name.
 | 
						|
 | 
						|
  All routines check to make sure the address is within range and valid for
 | 
						|
  the size of the object. If an addressing error is found, a trap occurs.
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
function memw(a:adr):word;
 | 
						|
var b:word; i:integer;
 | 
						|
begin wordadr(a); b:=0;
 | 
						|
      for i:=wsize-1 downto 0 do b:=256*b + data[a+i] ;
 | 
						|
      memw:=b
 | 
						|
end;
 | 
						|
 | 
						|
function memd(a:adr):double; { Always signed }
 | 
						|
var b:double; i:integer;
 | 
						|
begin wordadr(a); b:=data[a+2*wsize-1];
 | 
						|
      if b>=128 then b:=b-256;
 | 
						|
      for i:=2*wsize-2 downto 0 do b:=256*b + data[a+i] ;
 | 
						|
      memd:=b
 | 
						|
end;
 | 
						|
 | 
						|
function mema(a:adr):adr;
 | 
						|
var b:adr; i:integer;
 | 
						|
begin wordadr(a); b:=0;
 | 
						|
      for i:=asize-1 downto 0 do b:=256*b + data[a+i] ;
 | 
						|
      mema:=b
 | 
						|
end;
 | 
						|
 | 
						|
function mems(a:adr;s:size):word;
 | 
						|
var i:integer; b:word;
 | 
						|
begin chkadr(a,s); b:=0; for i:=1 to s do b:=b*256+data[a+s-i]; mems:=b end;
 | 
						|
 | 
						|
function memb(a:adr):byte;
 | 
						|
begin memadr(a); memb:=data[a] end;
 | 
						|
 | 
						|
procedure store(a:adr; x:word);
 | 
						|
var i:integer;
 | 
						|
begin wordadr(a);
 | 
						|
  for i:=0 to wsize-1 do
 | 
						|
     begin data[a+i]:=x mod 256; x:=x div 256 end
 | 
						|
end;
 | 
						|
 | 
						|
procedure storea(a:adr; x:adr);
 | 
						|
var i:integer;
 | 
						|
begin wordadr(a);
 | 
						|
  for i:=0 to asize-1 do
 | 
						|
     begin data[a+i]:=x mod 256; x:=x div 256 end
 | 
						|
end;
 | 
						|
 | 
						|
procedure stores(a:adr;s:size;v:word);
 | 
						|
var i:integer;
 | 
						|
begin chkadr(a,s);
 | 
						|
  for i:=0 to s-1 do begin data[a+i]:=v mod 256; v:=v div 256 end;
 | 
						|
end;
 | 
						|
 | 
						|
procedure storeb(a:adr; b:byte);
 | 
						|
begin memadr(a); data[a]:=b end;
 | 
						|
 | 
						|
function memi(a:adr):adr;
 | 
						|
var b:adr; i:integer;
 | 
						|
begin if (a mod wsize<>0) or (a+asize-1>maxcode) then trap(EBADPTR); b:=0;
 | 
						|
      for i:=asize-1 downto 0 do b:=256*b + code[a+i] ;
 | 
						|
      memi:=b
 | 
						|
end;
 | 
						|
 | 
						|
function nextpc:byte;
 | 
						|
begin if pc>=pd then trap(EBADPC); nextpc:=code[pc]; newpc(pc+1) end;
 | 
						|
 | 
						|
procedure lino(w:word);
 | 
						|
begin store(lineadr,w) end;
 | 
						|
 | 
						|
procedure filna(a:adr);
 | 
						|
begin storea(fileadr,a) end;
 | 
						|
.ne 20
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                    Stack Manipulation Routines                            }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
{ push puts a word on the stack
 | 
						|
  pushsw takes a signed one word integer and pushes it on the stack
 | 
						|
  pop removes a machine word from the stack and delivers it as a word
 | 
						|
  popsw removes a machine word from the stack and delivers a signed integer
 | 
						|
  pusha pushes an address on the stack
 | 
						|
  popa removes a machine word from the stack and delivers it as an address
 | 
						|
  pushd pushes a double precision number on the stack
 | 
						|
  popd removes two machine words and returns a double precision integer
 | 
						|
  pushr pushes a float (floating point) number on the stack
 | 
						|
  popr removes several machine words and returns a float number
 | 
						|
  pushx puts an object of arbitrary size on the stack
 | 
						|
  popx removes an object of arbitrary size
 | 
						|
									  }
 | 
						|
 | 
						|
procedure push(x:word);
 | 
						|
begin newsp(sp-wsize); store(sp,x) end;
 | 
						|
 | 
						|
procedure pushsw(x:sword);
 | 
						|
begin newsp(sp-wsize); store(sp,unsign(x)) end;
 | 
						|
 | 
						|
function pop:word;
 | 
						|
begin pop:=memw(sp); newsp(sp+wsize) end;
 | 
						|
 | 
						|
function popsw:sword;
 | 
						|
begin popsw:=signwd(pop) end;
 | 
						|
 | 
						|
procedure pusha(x:adr);
 | 
						|
begin newsp(sp-asize); storea(sp,x) end;
 | 
						|
 | 
						|
function popa:adr;
 | 
						|
begin popa:=mema(sp); newsp(sp+asize) end;
 | 
						|
 | 
						|
procedure pushd(y:double);
 | 
						|
begin { push double integer onto the stack } newsp(sp-2*wsize) end;
 | 
						|
 | 
						|
function popd:double;
 | 
						|
begin { pop double integer from the stack } newsp(sp+2*wsize); popd:=0 end;
 | 
						|
 | 
						|
procedure pushr(z:real);
 | 
						|
begin { Push a float onto the stack } newsp(sp-fsize) end;
 | 
						|
 | 
						|
function popr:real;
 | 
						|
begin { pop float from the stack } newsp(sp+fsize); popr:=0.0 end;
 | 
						|
 | 
						|
procedure pushx(objsize:size; a:adr);
 | 
						|
var i:integer;
 | 
						|
begin
 | 
						|
  if objsize<wsize
 | 
						|
     then push(mems(a,objsize))
 | 
						|
     else for i:=1 to objsize div wsize do push(memw(a+objsize-wsize*i))
 | 
						|
end;
 | 
						|
 | 
						|
procedure popx(objsize:size; a:adr);
 | 
						|
var i:integer;
 | 
						|
begin
 | 
						|
  if objsize<wsize
 | 
						|
     then stores(a,objsize,pop)
 | 
						|
     else for i:=1 to objsize div wsize do store(a-wsize+wsize*i,pop)
 | 
						|
end;
 | 
						|
.ne 20
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{              Bit manipulation routines (extract, shift, rotate)           }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
procedure sleft(var w:sword);  { 1 bit left shift   }
 | 
						|
begin w:= dosign(fitsw(2*w,EIOVFL)) end;
 | 
						|
 | 
						|
procedure suleft(var w:word);  { 1 bit left shift   }
 | 
						|
begin w := chopw(2*w) end;
 | 
						|
 | 
						|
procedure sdleft(var d:double);  { 1 bit left shift   }
 | 
						|
begin { shift two word signed integer } end;
 | 
						|
 | 
						|
procedure sright(var w:sword);  { 1 bit right shift with sign extension }
 | 
						|
begin if w >= 0 then w := w div 2 else w := (w-1) div 2 end;
 | 
						|
 | 
						|
procedure suright(var w:word);    { 1 bit right shift without sign extension }
 | 
						|
begin w := w div 2 end;
 | 
						|
 | 
						|
procedure sdright(var d:double);  { 1 bit right shift   }
 | 
						|
begin { shift two word signed integer } end;
 | 
						|
 | 
						|
procedure rleft(var w:word);  { 1 bit left rotate }
 | 
						|
begin if w >= t15
 | 
						|
	then w:=(w-t15)*2 + 1
 | 
						|
	else w:=w*2
 | 
						|
end;
 | 
						|
 | 
						|
procedure rright(var w:word);  { 1 bit right rotate }
 | 
						|
begin if w mod 2 = 1
 | 
						|
	then w:=w div 2 + t15
 | 
						|
	else w:=w div 2
 | 
						|
end;
 | 
						|
 | 
						|
function sextend(w:word;s:size):word;
 | 
						|
var i:size;
 | 
						|
begin
 | 
						|
  for i:=1 to (wsize-s)*8 do rleft(w);
 | 
						|
  for i:=1 to (wsize-s)*8 do sright(w);
 | 
						|
  sextend:=w;
 | 
						|
end;
 | 
						|
 | 
						|
function bit(b:bitnr; w:word):bitval; { return bit b of the word w }
 | 
						|
var i:bitnr;
 | 
						|
begin for i:= 1 to b do rright(w); bit:= w mod 2 end;
 | 
						|
 | 
						|
function bf(ty:bftype; w1,w2:word):word;  { return boolean fcn of 2 words }
 | 
						|
var i:bitnr; j:word;
 | 
						|
begin j:=0;
 | 
						|
      for i:= maxbitnr downto 0 do
 | 
						|
	begin j := 2*j;
 | 
						|
	      case ty of
 | 
						|
		andf: if bit(i,w1)+bit(i,w2) = 2 then j:=j+1;
 | 
						|
		iorf: if bit(i,w1)+bit(i,w2) > 0 then j:=j+1;
 | 
						|
		xorf: if bit(i,w1)+bit(i,w2) = 1 then j:=j+1
 | 
						|
	      end
 | 
						|
	end;
 | 
						|
      bf:=j
 | 
						|
end;
 | 
						|
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                           Array indexing                                  }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
function arraycalc(c:adr):adr; { subscript calculation }
 | 
						|
var j:full; objsize:size; a:adr;
 | 
						|
begin j:= popsw - signwd(memw(c));
 | 
						|
  if (j<0) or (j>memw(c+wsize)) then trap(EARRAY);
 | 
						|
  objsize := argo(memw(c+wsize+wsize));
 | 
						|
  a := j*objsize+popa; chkadr(a,objsize);
 | 
						|
  arraycalc:=a
 | 
						|
end;
 | 
						|
.ne 20
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                       Double and Real Arithmetic                          }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
{ All routines for doubles and floats are dummy routines, since the format of
 | 
						|
  doubles and floats is not defined in EM.
 | 
						|
}
 | 
						|
 | 
						|
function doadi(ds,dt:double):double;
 | 
						|
begin { add two doubles } doadi:=0 end;
 | 
						|
 | 
						|
function dosbi(ds,dt:double):double;
 | 
						|
begin { subtract two doubles } dosbi:=0 end;
 | 
						|
 | 
						|
function domli(ds,dt:double):double;
 | 
						|
begin { multiply two doubles } domli:=0 end;
 | 
						|
 | 
						|
function dodvi(ds,dt:double):double;
 | 
						|
begin { divide two doubles } dodvi:=0 end;
 | 
						|
 | 
						|
function dormi(ds,dt:double):double;
 | 
						|
begin { modulo of two doubles } dormi:=0 end;
 | 
						|
 | 
						|
function dongi(ds:double):double;
 | 
						|
begin { negative of a double } dongi:=0 end;
 | 
						|
 | 
						|
function doadf(x,y:real):real;
 | 
						|
begin { add two floats } doadf:=0.0 end;
 | 
						|
 | 
						|
function dosbf(x,y:real):real;
 | 
						|
begin { subtract two floats } dosbf:=0.0 end;
 | 
						|
 | 
						|
function domlf(x,y:real):real;
 | 
						|
begin { multiply two floats } domlf:=0.0 end;
 | 
						|
 | 
						|
function dodvf(x,y:real):real;
 | 
						|
begin { divide two floats } dodvf:=0.0 end;
 | 
						|
 | 
						|
function dongf(x:real):real;
 | 
						|
begin { negate a float } dongf:=0.0 end;
 | 
						|
 | 
						|
procedure dofif(x,y:real;var intpart,fraction:real);
 | 
						|
begin { dismember x*y into integer and fractional parts }
 | 
						|
  intpart:=0.0;  { integer part of x*y, same sign as x*y }
 | 
						|
  fraction:=0.0;
 | 
						|
	{ fractional part of x*y, 0<=abs(fraction)<1 and same sign as x*y }
 | 
						|
end;
 | 
						|
 | 
						|
procedure dofef(x:real;var mantissa:real;var exponent:sword);
 | 
						|
begin { dismember x into mantissa and exponent parts }
 | 
						|
  mantissa:=0.0;  { mantissa of x , >= 1/2 and <1 }
 | 
						|
  exponent:=0;    { base 2 exponent of x }
 | 
						|
end;
 | 
						|
.bp
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                            Trap and Call                                  }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
procedure call(p:adr); { Perform the call }
 | 
						|
begin
 | 
						|
  pusha(lb);pusha(pc);
 | 
						|
  newlb(sp);newsp(sp - memi(pd + pdsize*p + pdlocs));
 | 
						|
  newpc(memi(pd + pdsize*p+ pdbase))
 | 
						|
end;
 | 
						|
 | 
						|
procedure dotrap(n:byte);
 | 
						|
var i:size;
 | 
						|
begin
 | 
						|
  if (uerrorproc=0) or intrap then
 | 
						|
    begin
 | 
						|
      if intrap then
 | 
						|
	writeln('Recursive trap, first trap number was ', trapval:1);
 | 
						|
      writeln('Error ', n:1);
 | 
						|
      writeln('With',ord(insr):4,' arg ',k:1);
 | 
						|
      goto 9999
 | 
						|
    end;
 | 
						|
  { Deposit all interpreter variables that need to be saved on
 | 
						|
    the stack. This includes all scratch variables that can
 | 
						|
    be in use at the moment and ( not possible in this interpreter )
 | 
						|
    the internal address of the interpreter where the error occurred.
 | 
						|
    This would make it possible to execute an RTT instruction totally
 | 
						|
    transparent to the user program.
 | 
						|
    It can, for example, occur within an ADD instruction that both
 | 
						|
    operands are undefined and that the result overflows.
 | 
						|
    Although this will generate 3 error traps it must be possible
 | 
						|
    to ignore them all.
 | 
						|
}
 | 
						|
  intrap:=true; trapval:=n;
 | 
						|
  for i:=retsize div wsize downto 1 do push(retarea[i]);
 | 
						|
  push(retsize);              { saved return area }
 | 
						|
  pusha(mema(fileadr));       { saved current file name pointer }
 | 
						|
  push(memw(lineadr));        { saved line number }
 | 
						|
  push(n);                    { push error number }
 | 
						|
  a:=argp(uerrorproc);
 | 
						|
  uerrorproc:=0;              { reset signal }
 | 
						|
  call(a);                    { call the routine }
 | 
						|
  intrap:=false;              { Don't catch recursive traps anymore }
 | 
						|
  goto 8888;                  { reenter main loop }
 | 
						|
end;
 | 
						|
 | 
						|
procedure trap;
 | 
						|
{ This routine is invoked for overflow, and other run time errors.
 | 
						|
  For non-fatal errors, trap returns to the calling routine
 | 
						|
}
 | 
						|
begin
 | 
						|
  if n>=16 then dotrap(n) else if bit(n,ignmask)=0 then dotrap(n);
 | 
						|
end;
 | 
						|
 | 
						|
procedure dortt;
 | 
						|
{ The restoration of file address and line number is not essential.
 | 
						|
  The restoration of the return save area is.
 | 
						|
}
 | 
						|
var i:size;
 | 
						|
    n:word;
 | 
						|
begin
 | 
						|
  newsp(lb); lb:=maxdata+1 ; { to circumvent ESTACK for the popa + pop }
 | 
						|
  newpc(popa); newlb(popa); { So far a plain RET 0 }
 | 
						|
  n:=pop; if (n>=16) and (n<64) then goto 9999 ;
 | 
						|
  lino(pop); filna(popa); retsize:=pop;
 | 
						|
  for i:=1 to retsize div wsize do retarea[i]:=pop ;
 | 
						|
end;
 | 
						|
.sp 2
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                              monitor calls                                }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
 | 
						|
procedure domon(entry:word);
 | 
						|
var     index:  1..63;
 | 
						|
	dummy:  double;
 | 
						|
	count,rwptr:    adr;
 | 
						|
	token:  byte;
 | 
						|
	i:      integer;
 | 
						|
begin
 | 
						|
  if (entry<=0) or (entry>63) then entry:=63 ;
 | 
						|
  index:=entry;
 | 
						|
  case index of
 | 
						|
   1: begin { exit } exitstatus:=pop; halted:=true end;
 | 
						|
   3: begin { read }  dummy:=pop; { All input is from stdin }
 | 
						|
	rwptr:=popa; count:=popa;
 | 
						|
	i:=0 ;
 | 
						|
	while (not eof(input)) and (i<count) do
 | 
						|
	begin
 | 
						|
	  if eoln(input) then begin storeb(rwptr,10) ; count:=i end
 | 
						|
			 else storeb(rwptr,ord(input^)) ;
 | 
						|
	  get(input); rwptr:=rwptr+1 ; i:=i+1 ;
 | 
						|
	end;
 | 
						|
	pusha(i); push(0)
 | 
						|
      end;
 | 
						|
   4: begin { write } dummy:=pop; { All output is to stdout }
 | 
						|
	rwptr:=popa; count:=popa;
 | 
						|
	for i:=1 to count do
 | 
						|
	  begin token:=memb(rwptr); rwptr:=rwptr+1 ;
 | 
						|
	    if token=10 then writeln else write(chr(token))
 | 
						|
	  end ;
 | 
						|
	pusha(count);
 | 
						|
	push(0)
 | 
						|
      end;
 | 
						|
  54: begin { ioctl, faked } dummy:=popa;dummy:=popa;dummy:=pop;push(0) end ;
 | 
						|
       2,          5,  6,  7,  8,  9, 10,
 | 
						|
  11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
 | 
						|
  21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
 | 
						|
  31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
 | 
						|
  41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
 | 
						|
  51, 52, 53,     55, 56, 57, 58, 59, 60,
 | 
						|
  61, 62:
 | 
						|
      begin push(22); push(22) end;
 | 
						|
  63: { exists only for the trap }
 | 
						|
      trap(EBADMON)
 | 
						|
  end
 | 
						|
end;
 | 
						|
.bp
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                       Initialization and debugging                        }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
procedure doident; { print line number and file name }
 | 
						|
var a:adr; i,c:integer; found:boolean;
 | 
						|
begin
 | 
						|
  write('at line ',memw(lineadr):1,' ');
 | 
						|
  a:=mema(fileadr); if a<>0 then
 | 
						|
  begin i:=20; found:=false;
 | 
						|
    while (i<>0) and not found do
 | 
						|
    begin c:=memb(a); a:=a+1; found:=true; i:=i-1;
 | 
						|
      if (c>=48) and (c<=57) then
 | 
						|
	begin found:=false; write(chr(ord('0')+c-48)) end;
 | 
						|
      if (c>=65) and (c<=90) then
 | 
						|
	begin found:=false; write(chr(ord('A')+c-65)) end;
 | 
						|
      if (c>=97) and (c<=122) then
 | 
						|
	begin found:=false; write(chr(ord('a')+c-97)) end;
 | 
						|
    end;
 | 
						|
  end;
 | 
						|
  writeln;
 | 
						|
end;
 | 
						|
 | 
						|
procedure initialize;  { start the ball rolling }
 | 
						|
{ This is not part of the machine definition }
 | 
						|
var cset:set of char;
 | 
						|
    f:ifset;
 | 
						|
    iclass:insclass;
 | 
						|
    insno:byte;
 | 
						|
    nops:integer;
 | 
						|
    opcode:byte;
 | 
						|
    i,j,n:integer;
 | 
						|
    wtemp:sword;
 | 
						|
    count:integer;
 | 
						|
    repc:adr;
 | 
						|
    nexta,firsta:adr;
 | 
						|
    elem:byte;
 | 
						|
    amount,ofst:size;
 | 
						|
    c:char;
 | 
						|
 | 
						|
    function readb(n:integer):double;
 | 
						|
    var b:byte;
 | 
						|
    begin read(prog,b); if n>1 then readb:=readb(n-1)*256+b else readb:=b end;
 | 
						|
 | 
						|
    function readbyte:byte;
 | 
						|
    begin readbyte:=readb(1) end;
 | 
						|
 | 
						|
    function readword:word;
 | 
						|
    begin readword:=readb(wsize) end;
 | 
						|
 | 
						|
    function readadr:adr;
 | 
						|
    begin readadr:=readb(asize) end;
 | 
						|
 | 
						|
    function ifind(ordinal:byte):mnem;
 | 
						|
    var loopvar:mnem;
 | 
						|
	found:boolean;
 | 
						|
    begin ifind:=NON;
 | 
						|
      loopvar:=insr; found:=false;
 | 
						|
      repeat
 | 
						|
	if ordinal=ord(loopvar) then
 | 
						|
	  begin found:=true; ifind:=loopvar end;
 | 
						|
	if loopvar<>ZRL then loopvar:=succ(loopvar) else loopvar:=NON;
 | 
						|
      until found or (loopvar=insr) ;
 | 
						|
   end;
 | 
						|
 | 
						|
    procedure readhdr;
 | 
						|
    type hdrw=0..32767 ; { 16 bit header words }
 | 
						|
    var  hdr: hdrw;
 | 
						|
	 i: integer;
 | 
						|
    begin
 | 
						|
      for i:=0 to 7 do
 | 
						|
      begin hdr:=readb(2);
 | 
						|
	case i of
 | 
						|
	0: if hdr<>3757 then { 07255 }
 | 
						|
	   begin writeln('Not an em load file'); halt end;
 | 
						|
	2: if hdr<>0 then
 | 
						|
	   begin writeln('Unsolved references'); halt end;
 | 
						|
	3: if hdr<>3 then
 | 
						|
	   begin writeln('Incorrect load file version'); halt end;
 | 
						|
	4: if hdr<>wsize then
 | 
						|
	   begin writeln('Incorrect word size'); halt end;
 | 
						|
	5: if hdr<>asize then
 | 
						|
	   begin writeln('Incorrect pointer size'); halt end;
 | 
						|
	1,6,7:;
 | 
						|
	end
 | 
						|
      end
 | 
						|
    end;
 | 
						|
 | 
						|
    procedure noinit;
 | 
						|
    begin writeln('Illegal initialization'); halt end;
 | 
						|
 | 
						|
    procedure readint(a:adr;s:size);
 | 
						|
    var i:size;
 | 
						|
    begin { construct integer out of byte sequence }
 | 
						|
      for i:=1 to s do { construct the value and initialize at a }
 | 
						|
	begin storeb(a,readbyte); a:=a+1 end
 | 
						|
    end;
 | 
						|
 | 
						|
    procedure readuns(a:adr;s:size);
 | 
						|
    begin { construct unsigned out of byte sequence }
 | 
						|
      readint(a,s) { identical to readint }
 | 
						|
    end;
 | 
						|
 | 
						|
    procedure readfloat(a:adr;s:size);
 | 
						|
    var i:size; b:byte;
 | 
						|
    begin { construct float out of string}
 | 
						|
      if (s<>4) and (s<>8) then noinit; i:=0;
 | 
						|
      repeat { eat the bytes, construct the value and intialize at a }
 | 
						|
	b:=readbyte; i:=i+1;
 | 
						|
      until b=0 ;
 | 
						|
    end;
 | 
						|
 | 
						|
begin
 | 
						|
  halted:=false;
 | 
						|
  exitstatus:=undef;
 | 
						|
  uerrorproc:=0; intrap:=false;
 | 
						|
 | 
						|
  { initialize tables }
 | 
						|
  for i:=0 to maxcode do code[i]:=0;
 | 
						|
  for i:=0 to maxdata do data[i]:=0;
 | 
						|
  for iclass:=prim to tert do
 | 
						|
    for i:=0 to 255 do
 | 
						|
      with dispat[iclass][i] do
 | 
						|
	begin instr:=NON; iflag:=[zbit] end;
 | 
						|
 | 
						|
  { read instruction table file. see appendix B }
 | 
						|
  { The table read here is a simple transformation of the table on page xx }
 | 
						|
  { - instruction names were transformed to numbers }
 | 
						|
  { - the '-' flag was transformed to an 'i' flag for 'w' type instructions }
 | 
						|
  { - the 'S' flag was added for instructions having signed operands }
 | 
						|
  reset(tables);
 | 
						|
  insr:=NON;
 | 
						|
  repeat
 | 
						|
    read(tables,insno) ; cset:=[]; f:=[];
 | 
						|
    insr:=ifind(insno);
 | 
						|
    if insr=NON then begin writeln('Incorrect table'); halt end;
 | 
						|
    repeat read(tables,c) until c<>' ' ;
 | 
						|
    repeat
 | 
						|
      cset:=cset+[c];
 | 
						|
      read(tables,c)
 | 
						|
    until c=' ' ;
 | 
						|
    if 'm' in cset then f:=f+[mini];
 | 
						|
    if 's' in cset then f:=f+[short];
 | 
						|
    if '-' in cset then f:=f+[zbit];
 | 
						|
    if 'i' in cset then f:=f+[ibit];
 | 
						|
    if 'S' in cset then f:=f+[sbit];
 | 
						|
    if 'w' in cset then f:=f+[wbit];
 | 
						|
    if (mini in f) or (short in f) then read(tables,nops) else nops:=1 ;
 | 
						|
    readln(tables,opcode);
 | 
						|
    if ('4' in cset) or ('8' in cset) then
 | 
						|
      begin iclass:=tert end
 | 
						|
    else if 'e' in cset then
 | 
						|
      begin iclass:=second end
 | 
						|
    else iclass:=prim;
 | 
						|
    for i:=0 to nops-1 do
 | 
						|
    begin
 | 
						|
      with dispat[iclass,opcode+i] do
 | 
						|
      begin
 | 
						|
	iflag:=f; instr:=insr;
 | 
						|
	if '2' in cset      then ilength:=2
 | 
						|
	else if 'u' in cset then ilength:=2
 | 
						|
	else if '4' in cset then ilength:=4
 | 
						|
	else if '8' in cset then ilength:=8
 | 
						|
	else if (mini in f) or (short in f) then
 | 
						|
	  begin
 | 
						|
	    if 'N' in cset then wtemp:=-1-i else wtemp:=i ;
 | 
						|
	    if 'o' in cset then wtemp:=wtemp+1 ;
 | 
						|
	    if short in f then wtemp:=wtemp*256 ;
 | 
						|
	    implicit:=wtemp
 | 
						|
	  end
 | 
						|
      end
 | 
						|
    end
 | 
						|
  until eof(tables);
 | 
						|
 | 
						|
  { read in program text, data and procedure descriptors }
 | 
						|
  reset(prog);
 | 
						|
  readhdr;                               { verify first header }
 | 
						|
  for i:=1 to 8 do header[i]:=readadr;  { read second header }
 | 
						|
  hp:=maxdata+1; sp:=maxdata+1; lino(0);
 | 
						|
  { read program text }
 | 
						|
  if header[NTEXT]+header[NPROC]*pdsize>maxcode then
 | 
						|
    begin writeln('Text size too large'); halt end;
 | 
						|
  if header[SZDATA]>maxdata then
 | 
						|
    begin writeln('Data size too large'); halt end;
 | 
						|
  for i:=0 to header[NTEXT]-1 do code[i]:=readbyte;
 | 
						|
  { read data blocks }
 | 
						|
  nexta:=0;
 | 
						|
  for i:=1 to header[NDATA] do
 | 
						|
    begin
 | 
						|
      n:=readbyte;
 | 
						|
      if n<>0 then
 | 
						|
	begin
 | 
						|
	  elem:=readbyte; firsta:=nexta;
 | 
						|
	  case n of
 | 
						|
	  1: { uninitialized words }
 | 
						|
	     for j:=1 to elem do
 | 
						|
	     begin store(nexta,undef); nexta:=nexta+wsize end;
 | 
						|
	  2: { initialized bytes }
 | 
						|
	     for j:=1 to elem do
 | 
						|
	     begin storeb(nexta,readbyte); nexta:=nexta+1 end;
 | 
						|
	  3: { initialized words }
 | 
						|
	     for j:=1 to elem do
 | 
						|
	     begin store(nexta,readword); nexta:=nexta+wsize end;
 | 
						|
	  4,5: { instruction and data pointers }
 | 
						|
	     for j:=1 to elem do
 | 
						|
	     begin storea(nexta,readadr); nexta:=nexta+asize end;
 | 
						|
	  6: { signed integers }
 | 
						|
	     begin readint(nexta,elem); nexta:=nexta+elem end;
 | 
						|
	  7: { unsigned integers }
 | 
						|
	     begin readuns(nexta,elem); nexta:=nexta+elem end;
 | 
						|
	  8: { floating point numbers }
 | 
						|
	     begin readfloat(nexta,elem); nexta:=nexta+elem end;
 | 
						|
	  end
 | 
						|
	end
 | 
						|
      else
 | 
						|
	begin
 | 
						|
	  repc:=readadr; amount:=nexta-firsta;
 | 
						|
	  for count:=1 to repc do
 | 
						|
	  begin
 | 
						|
	    for ofst:=0 to amount-1 do data[nexta+ofst]:=data[firsta+ofst];
 | 
						|
	    nexta:=nexta+amount;
 | 
						|
	  end
 | 
						|
	end
 | 
						|
    end;
 | 
						|
  if header[SZDATA]<>nexta then writeln('Data initialization error');
 | 
						|
  hp:=nexta;
 | 
						|
  { read descriptor table }
 | 
						|
  pd:=header[NTEXT];
 | 
						|
  for i:=1 to header[NPROC]*pdsize do code[pd+i-1]:=readbyte;
 | 
						|
  { call the entry point routine }
 | 
						|
  ignmask:=0;	   { catch all traps, higher numbered traps cannot be ignored}
 | 
						|
  retsize:=0;
 | 
						|
  lb:=maxdata;     { illegal dynamic link }
 | 
						|
  pc:=maxcode;     { illegal return address }
 | 
						|
  push(0); a:=sp;  { No environment }
 | 
						|
  push(0); b:=sp;  { No args }
 | 
						|
  pusha(a);        { envp }
 | 
						|
  pusha(b);        { argv }
 | 
						|
  push(0);         { argc }
 | 
						|
  call(argp(header[ENTRY]));
 | 
						|
end;
 | 
						|
.bp
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                       MAIN LOOP OF THE INTERPRETER                        }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{ It should be noted that the interpreter (microprogram) for  an  EM
 | 
						|
  machine  can be written in two fundamentally different ways: (1) the
 | 
						|
  instruction operands are fetched in the main loop, or  (2)  the  in-
 | 
						|
  struction operands are fetched after the 256 way branch, by the exe-
 | 
						|
  cution routines themselves.  In this interpreter, method (1) is used
 | 
						|
  to  simplify  the  description  of execution  routines. The dispatch
 | 
						|
  table dispat is used to determine how the operand is  encoded. There
 | 
						|
  are 4 possibilities:
 | 
						|
 | 
						|
     0. There is no operand
 | 
						|
     1. The operand and  instruction are  together in 1  byte (mini)
 | 
						|
     2. The operand is  one byte long and follows the opcode byte(s)
 | 
						|
     3. The operand is two bytes long and follows the opcode byte(s)
 | 
						|
     4. The operand is four bytes long and follows the opcode byte(s)
 | 
						|
 | 
						|
  In  this  interpreter,  the  main  loop determines the operand type,
 | 
						|
  fetches it, and leaves it in the global variable k for the execution
 | 
						|
  routines  to use.  Consequently, instructions such as LOL, which use
 | 
						|
  three different formats, need only be described once in the body  of
 | 
						|
  the interpreter.
 | 
						|
      However, for  a  production  interpreter,  or  a  hardware  EM
 | 
						|
  machine,  it  is  probably better to use method (2), i.e. to let the
 | 
						|
  execution routines themselves fetch their own operands.  The  reason
 | 
						|
  for this is that each opcode uniquely determines the operand format,
 | 
						|
  so no table lookup in the dispatch table is needed.  The whole table
 | 
						|
  is not needed. Method (2) therefore executes much faster.
 | 
						|
      However, separate execution routines will be needed for LOL with
 | 
						|
  a one byte offset,  and  LOL with a two byte offset.  It is to avoid
 | 
						|
  this additional clutter that method (1) is used here.  In a  produc-
 | 
						|
  tion interpreter, it is envisioned that the main loop will fetch the
 | 
						|
  next instruction byte, and use it as an index into a 256 word  table
 | 
						|
  to  find  the  address  of  the interpreter routine to jump to.  The
 | 
						|
  routine jumped to will  begin  by  fetching  its  operand,  if  any,
 | 
						|
  without  any  table  lookup,  since it knows which format to expect.
 | 
						|
  After doing the work, it returns to the main  loop  by  jumping  in-
 | 
						|
  directly  to  a register that contains the address of the main loop.
 | 
						|
      A slight variation on this idea is to have the  register contain
 | 
						|
  the address of the branch table, rather than the address of the main
 | 
						|
  loop.
 | 
						|
      Another  issue  is whether the execution routines for LOL 0, LOL
 | 
						|
  2, LOL 4, etc. should all be have distinct execution routines. Doing
 | 
						|
  so  provides for the maximum speed, since the operand is implicit in
 | 
						|
  the routine itself.  The disadvantage is that many nearly  identical
 | 
						|
  execution  routines will then be needed.  Another way of doing it is
 | 
						|
  to keep the instruction byte fetched from memory (LOL 0, LOL 2,  LOL
 | 
						|
  4, etc.) in some register, and have all the LOL mini format instruc-
 | 
						|
  tions branch to a common routine.  This routine can  then  determine
 | 
						|
  the  operand  by  subtracting  the code for LOL 0 from the register,
 | 
						|
  leaving the true operand in the register  (as  a  word  quantity  of
 | 
						|
  course).   This  method  makes the interpreter smaller, but is a bit
 | 
						|
  slower.
 | 
						|
.bp
 | 
						|
       To make this important point a little clearer, consider how a
 | 
						|
  production interpreter for the PDP-11 might appear.  Let us assume the
 | 
						|
  following opcodes have been assigned:
 | 
						|
 | 
						|
       31: LOL -2     (2 bytes, i.e. next word)
 | 
						|
       32: LOL -4
 | 
						|
       33: LOL -6
 | 
						|
       34: LOL b      (format with a one byte offset)
 | 
						|
       35: LOL w      (format with a one word, i.e. two byte offset)
 | 
						|
 | 
						|
  Further assume that each of the 5 opcodes will have its own execution
 | 
						|
  routine, i.e. we are making a tradeoff in favor of fast execution and
 | 
						|
  a slightly larger interpreter.
 | 
						|
       Register r5 is the em program counter.
 | 
						|
       Register r4 is the em LB register
 | 
						|
       Register r3 is the em SP register (the stack grows toward low core)
 | 
						|
       Register r2 contains the interpreter address of the main loop
 | 
						|
 | 
						|
  The main loop looks like this:
 | 
						|
 | 
						|
       movb (r5)+,r0           /fetch the opcode into r0 and increment r5
 | 
						|
       asl r0                  /shift r0 left 1 bit. Now: -256<=r0<=+254
 | 
						|
       jmp *table(r0)          /jump to execution routine
 | 
						|
 | 
						|
  Notice that no operand fetching has been done. The execution routines for
 | 
						|
  the 5 sample instructions given above might be as follows:
 | 
						|
 | 
						|
  lol2: mov -2(r4),-(sp)       /push local -2 onto stack
 | 
						|
	jmp (r2)               /go back to main loop
 | 
						|
  lol4: mov -4(r4),-(sp)       /push local -4 onto stack
 | 
						|
	jmp (r2)               /go back to main loop
 | 
						|
  lol6: mov -6(r4),-(sp)       /push local -6 onto stack
 | 
						|
	jmp (r2)               /go back to main loop
 | 
						|
  lolb: mov $177400,r0         /prepare to fetch the 1 byte operand
 | 
						|
	bisb (r5)+,r0          /operand is now in r0
 | 
						|
	asl r0                 /r0 is now offset from LB in bytes, not words
 | 
						|
	add r4,r0              /r0 is now address of the needed local
 | 
						|
	mov (r0),-(sp)         /push the local onto the stack
 | 
						|
	jmp (r2)
 | 
						|
  lolw: clr r0                 /prepare to fetch the 2 byte operand
 | 
						|
	bisb (r5)+,r0          /fetch high order byte first !!!
 | 
						|
	swab r0                /insert high order byte in place
 | 
						|
	bisb (r5)+,r0          /insert low order byte in place
 | 
						|
	asl r0                 /convert offset to bytes, from words
 | 
						|
	add r4,r0              /r0 is now address of needed local
 | 
						|
	mov (r0),-(sp)         /stack the local
 | 
						|
	jmp (r2)               /done
 | 
						|
 | 
						|
  The important thing to notice is where and how the operand fetch occurred:
 | 
						|
       lol2, lol4, and lol6, (the mini's) have implicit operands
 | 
						|
       lolb knew it had to fetch one byte, and did so without any table lookup
 | 
						|
       lolw knew it had to fetch a word, and did so, high order byte first }
 | 
						|
.bp
 | 
						|
.sp 4
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{           Routines for the individual instructions                        }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
procedure loadops;
 | 
						|
var j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { LOAD GROUP }
 | 
						|
    LDC: pushd(argd(k));
 | 
						|
    LOC: pushsw(argc(k));
 | 
						|
    LOL: push(memw(locadr(k)));
 | 
						|
    LOE: push(memw(argg(k)));
 | 
						|
    LIL: push(memw(mema(locadr(k))));
 | 
						|
    LOF: push(memw(popa+argf(k)));
 | 
						|
    LAL: pusha(locadr(k));
 | 
						|
    LAE: pusha(argg(k));
 | 
						|
    LXL: begin a:=lb; for j:=1 to argn(k) do a:=mema(a+savsize); pusha(a) end;
 | 
						|
    LXA: begin a:=lb;
 | 
						|
	   for j:=1 to argn(k) do a:= mema(a+savsize);
 | 
						|
	   pusha(a+savsize)
 | 
						|
	 end;
 | 
						|
    LOI: pushx(argo(k),popa);
 | 
						|
    LOS: begin k:=argw(k); if k<>wsize then trap(EILLINS);
 | 
						|
	   k:=pop; pushx(argo(k),popa)
 | 
						|
	 end;
 | 
						|
    LDL: begin a:=locadr(k); push(memw(a+wsize)); push(memw(a)) end;
 | 
						|
    LDE: begin k:=argg(k); push(memw(k+wsize)); push(memw(k)) end;
 | 
						|
    LDF: begin k:=argf(k);
 | 
						|
	   a:=popa; push(memw(a+k+wsize)); push(memw(a+k))
 | 
						|
	 end;
 | 
						|
    LPI: push(argp(k))
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure storeops;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { STORE GROUP }
 | 
						|
    STL: store(locadr(k),pop);
 | 
						|
    STE: store(argg(k),pop);
 | 
						|
    SIL: store(mema(locadr(k)),pop);
 | 
						|
    STF: begin a:=popa; store(a+argf(k),pop) end;
 | 
						|
    STI: popx(argo(k),popa);
 | 
						|
    STS: begin k:=argw(k); if k<>wsize then trap(EILLINS);
 | 
						|
	   k:=popa; popx(argo(k),popa)
 | 
						|
	 end;
 | 
						|
    SDL: begin a:=locadr(k); store(a,pop); store(a+wsize,pop) end;
 | 
						|
    SDE: begin k:=argg(k); store(k,pop); store(k+wsize,pop) end;
 | 
						|
    SDF: begin k:=argf(k); a:=popa; store(a+k,pop); store(a+k+wsize,pop) end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure intarith;
 | 
						|
var i:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { SIGNED INTEGER ARITHMETIC }
 | 
						|
    ADI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; ss:=popsw; push(fitsw(ss+st,EIOVFL)) end;
 | 
						|
	 2: begin dt:=popd; ds:=popd; pushd(doadi(ds,dt)) end;
 | 
						|
	 end ;
 | 
						|
    SBI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; ss:= popsw; push(fitsw(ss-st,EIOVFL)) end;
 | 
						|
	 2: begin dt:=popd; ds:=popd; pushd(dosbi(ds,dt)) end;
 | 
						|
	 end ;
 | 
						|
    MLI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; ss:= popsw; push(fitsw(ss*st,EIOVFL)) end;
 | 
						|
	 2: begin dt:=popd; ds:=popd; pushd(domli(ds,dt)) end;
 | 
						|
	 end ;
 | 
						|
    DVI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:= popsw; ss:= popsw;
 | 
						|
	       if st=0 then trap(EIDIVZ) else pushsw(ss div st)
 | 
						|
	    end;
 | 
						|
	 2: begin dt:=popd; ds:=popd; pushd(dodvi(ds,dt)) end;
 | 
						|
	 end;
 | 
						|
    RMI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:= popsw; ss:=popsw;
 | 
						|
	       if st=0 then trap(EIDIVZ) else pushsw(ss - (ss div st)*st)
 | 
						|
	    end;
 | 
						|
	 2: begin dt:=popd; ds:=popd; pushd(dormi(ds,dt)) end
 | 
						|
	 end;
 | 
						|
    NGI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; pushsw(-st) end;
 | 
						|
	 2: begin ds:=popd; pushd(dongi(ds)) end
 | 
						|
	 end;
 | 
						|
    SLI: begin t:=pop;
 | 
						|
	   case szindex(argw(k)) of
 | 
						|
	   1: begin ss:=popsw;
 | 
						|
		 for i:= 1 to t do sleft(ss); pushsw(ss)
 | 
						|
	      end
 | 
						|
	   end
 | 
						|
	 end;
 | 
						|
    SRI: begin t:=pop;
 | 
						|
	   case szindex(argw(k)) of
 | 
						|
	   1: begin ss:=popsw;
 | 
						|
		 for i:= 1 to t do sright(ss); pushsw(ss)
 | 
						|
	      end;
 | 
						|
	   2: begin ds:=popd;
 | 
						|
		 for i:= 1 to t do sdright(ss); pushd(ss)
 | 
						|
	      end
 | 
						|
	   end
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure unsarith;
 | 
						|
var i:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { UNSIGNED INTEGER ARITHMETIC }
 | 
						|
    ADU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:= pop; push(chopw(s+t)) end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end ;
 | 
						|
    SBU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:= pop; push(chopw(s-t)) end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end ;
 | 
						|
    MLU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:= pop; push(chopw(s*t)) end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end ;
 | 
						|
    DVU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:= pop; s:= pop;
 | 
						|
	       if t=0 then trap(EIDIVZ) else push(s div t)
 | 
						|
	    end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    RMU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:= pop; s:=pop;
 | 
						|
	       if t=0 then trap(EIDIVZ) else push(s - (s div t)*t)
 | 
						|
	    end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    SLU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:=pop;
 | 
						|
	       for i:= 1 to t do suleft(s); push(s)
 | 
						|
	    end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    SRU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:=pop;
 | 
						|
	       for i:= 1 to t do suright(s); push(s)
 | 
						|
	    end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure fltarith;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { FLOATING POINT ARITHMETIC }
 | 
						|
    ADF: begin argwf(k); rt:=popr; rs:=popr; pushr(doadf(rs,rt)) end;
 | 
						|
    SBF: begin argwf(k); rt:=popr; rs:=popr; pushr(dosbf(rs,rt)) end;
 | 
						|
    MLF: begin argwf(k); rt:=popr; rs:=popr; pushr(domlf(rs,rt)) end;
 | 
						|
    DVF: begin argwf(k); rt:=popr; rs:=popr; pushr(dodvf(rs,rt)) end;
 | 
						|
    NGF: begin argwf(k); rt:=popr; pushr(dongf(rt)) end;
 | 
						|
    FIF: begin argwf(k); rt:=popr; rs:=popr;
 | 
						|
	       dofif(rt,rs,x,y); pushr(y); pushr(x)
 | 
						|
	 end;
 | 
						|
    FEF: begin argwf(k); rt:=popr; dofef(rt,x,ss); pushr(x); pushsw(ss) end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure ptrarith;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { POINTER ARITHMETIC }
 | 
						|
    ADP: pusha(popa+argf(k));
 | 
						|
    ADS: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; pusha(popa+st) end;
 | 
						|
	 2: begin dt:=popd; pusha(popa+dt) end;
 | 
						|
	 end;
 | 
						|
    SBS: begin
 | 
						|
	   a:=popa; b:=popa;
 | 
						|
	   case szindex(argw(k)) of
 | 
						|
	     1: push(fitsw(b-a,EIOVFL));
 | 
						|
	     2: pushd(b-a)
 | 
						|
	   end
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure incops;
 | 
						|
var j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { INCREMENT/DECREMENT/ZERO }
 | 
						|
    INC: push(fitsw(popsw+1,EIOVFL));
 | 
						|
    INL: begin a:=locadr(k); store(a,fitsw(signwd(memw(a))+1,EIOVFL)) end;
 | 
						|
    INE: begin a:=argg(k); store(a,fitsw(signwd(memw(a))+1,EIOVFL)) end;
 | 
						|
    DEC: push(fitsw(popsw-1,EIOVFL));
 | 
						|
    DEL: begin a:=locadr(k); store(a,fitsw(signwd(memw(a))-1,EIOVFL)) end;
 | 
						|
    DEE: begin a:=argg(k); store(a,fitsw(signwd(memw(a))-1,EIOVFL)) end;
 | 
						|
    ZRL: store(locadr(k),0);
 | 
						|
    ZRE: store(argg(k),0);
 | 
						|
    ZER: for j:=1 to argw(k) div wsize do push(0);
 | 
						|
    ZRF: pushr(0);
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure convops;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { CONVERT GROUP }
 | 
						|
    CII: begin s:=pop; t:=pop;
 | 
						|
	   if t<wsize then begin push(sextend(pop,t)); t:=wsize end;
 | 
						|
	   case szindex(argw(t)) of
 | 
						|
	   1: if szindex(argw(s))=2 then pushd(popsw);
 | 
						|
	   2: if szindex(argw(s))=1 then push(fitsw(popd,ECONV))
 | 
						|
	   end
 | 
						|
	 end;
 | 
						|
    CIU: case szindex(argw(pop)) of
 | 
						|
	 1: if szindex(argw(pop))=2 then push(unsign(popd mod negoff));
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    CIF: begin argwf(pop);
 | 
						|
	   case szindex(argw(pop)) of 1:pushr(popsw); 2:pushr(popd) end
 | 
						|
	 end;
 | 
						|
    CUI: case szindex(argw(pop)) of
 | 
						|
	 1: case szindex(argw(pop)) of
 | 
						|
	    1: begin s:=pop; if s>maxsint then trap(ECONV); push(s) end;
 | 
						|
	    2: trap(EILLINS);
 | 
						|
	    end;
 | 
						|
	 2: case szindex(argw(pop)) of
 | 
						|
	    1: pushd(pop);
 | 
						|
	    2: trap(EILLINS);
 | 
						|
	    end;
 | 
						|
	 end;
 | 
						|
    CUU: case szindex(argw(pop)) of
 | 
						|
	 1: if szindex(argw(pop))=2 then trap(EILLINS);
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    CUF: begin argwf(pop);
 | 
						|
	   if szindex(argw(pop))=1 then pushr(pop) else trap(EILLINS)
 | 
						|
	 end;
 | 
						|
    CFI: begin sz:=argw(pop); argwf(pop); rt:=popr;
 | 
						|
	   case szindex(sz) of
 | 
						|
	   1: push(fitsw(trunc(rt),ECONV));
 | 
						|
	   2: pushd(fitd(trunc(rt)));
 | 
						|
	   end
 | 
						|
	 end;
 | 
						|
    CFU: begin sz:=argw(pop); argwf(pop); rt:=popr;
 | 
						|
	   case szindex(sz) of
 | 
						|
	   1: push( chopw(trunc(abs(rt)-0.5)) );
 | 
						|
	   2: trap(EILLINS);
 | 
						|
	   end
 | 
						|
	 end;
 | 
						|
    CFF: begin argwf(pop); argwf(pop) end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure logops;
 | 
						|
var i,j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { LOGICAL GROUP }
 | 
						|
    XAND:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   for j:= 1 to k div wsize do
 | 
						|
	     begin a:=sp+k; t:=pop; store(a,bf(andf,memw(a),t)) end;
 | 
						|
	 end;
 | 
						|
    IOR:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   for j:= 1 to k div wsize do
 | 
						|
	     begin a:=sp+k; t:=pop; store(a,bf(iorf,memw(a),t)) end;
 | 
						|
	 end;
 | 
						|
    XOR:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   for j:= 1 to k div wsize do
 | 
						|
	     begin a:=sp+k; t:=pop; store(a,bf(xorf,memw(a),t)) end;
 | 
						|
	 end;
 | 
						|
    COM:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   for j:= 1 to k div wsize do
 | 
						|
	     begin
 | 
						|
	       store(sp+k-wsize*j, bf(xorf,memw(sp+k-wsize*j), negoff-1))
 | 
						|
	     end
 | 
						|
	 end;
 | 
						|
    ROL: begin k:=argw(k); if k<>wsize then trap(EILLINS);
 | 
						|
	   t:=pop; s:=pop; for i:= 1 to t do rleft(s); push(s)
 | 
						|
	 end;
 | 
						|
    ROR: begin k:=argw(k); if k<>wsize then trap(EILLINS);
 | 
						|
	   t:=pop; s:=pop; for i:= 1 to t do rright(s); push(s)
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure setops;
 | 
						|
var i,j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { SET GROUP }
 | 
						|
    INN:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   t:=pop;
 | 
						|
	   i:= t mod 8; t:= t div 8;
 | 
						|
	   if t>=k then
 | 
						|
	     begin trap(ESET); s:=0 end
 | 
						|
	   else
 | 
						|
	     begin s:=memb(sp+t) end;
 | 
						|
	   newsp(sp+k); push(bit(i,s));
 | 
						|
	 end;
 | 
						|
    XSET:
 | 
						|
	 begin k:=argw(k);
 | 
						|
	   t:=pop;
 | 
						|
	   i:= t mod 8; t:= t div 8;
 | 
						|
	   for j:= 1 to k div wsize do push(0);
 | 
						|
	   if t>=k then
 | 
						|
	     trap(ESET)
 | 
						|
	   else
 | 
						|
	     begin s:=1; for j:= 1 to i do rleft(s); storeb(sp+t,s) end
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure arrops;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { ARRAY GROUP }
 | 
						|
    LAR:
 | 
						|
	 begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
 | 
						|
	   pushx(argo(memw(a+2*k)),arraycalc(a))
 | 
						|
	 end;
 | 
						|
    SAR:
 | 
						|
	 begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
 | 
						|
	   popx(argo(memw(a+2*k)),arraycalc(a))
 | 
						|
	 end;
 | 
						|
    AAR:
 | 
						|
	 begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
 | 
						|
	   push(arraycalc(a))
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure cmpops;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { COMPARE GROUP }
 | 
						|
    CMI: case szindex(argw(k)) of
 | 
						|
	 1: begin st:=popsw; ss:=popsw;
 | 
						|
	      if ss<st then pushsw(-1) else if ss=st then push(0) else push(1)
 | 
						|
	    end;
 | 
						|
	 2: begin dt:=popd; ds:=popd;
 | 
						|
	      if ds<dt then pushsw(-1) else if ds=dt then push(0) else push(1)
 | 
						|
	    end;
 | 
						|
	 end;
 | 
						|
    CMU: case szindex(argw(k)) of
 | 
						|
	 1: begin t:=pop; s:=pop;
 | 
						|
	      if s<t then pushsw(-1) else if s=t then push(0) else push(1)
 | 
						|
	    end;
 | 
						|
	 2: trap(EILLINS);
 | 
						|
	 end;
 | 
						|
    CMP: begin a:=popa; b:=popa;
 | 
						|
	  if b<a then pushsw(-1) else if b=a then push(0) else push(1)
 | 
						|
	 end;
 | 
						|
    CMF: begin argwf(k); rt:=popr; rs:=popr;
 | 
						|
	   if rs<rt then pushsw(-1) else if rs=rt then push(0) else push(1)
 | 
						|
	 end;
 | 
						|
    CMS: begin k:=argw(k);
 | 
						|
	   t:= 0; j:= 0;
 | 
						|
	   while (j < k) and (t=0) do
 | 
						|
	     begin if memw(sp+j) <> memw(sp+k+j) then t:=1;
 | 
						|
	       j:=j+wsize
 | 
						|
	     end;
 | 
						|
	   newsp(sp+wsize*k); push(t);
 | 
						|
	 end;
 | 
						|
 | 
						|
    TLT: if popsw <  0 then push(1) else push(0);
 | 
						|
    TLE: if popsw <= 0 then push(1) else push(0);
 | 
						|
    TEQ: if pop   =  0 then push(1) else push(0);
 | 
						|
    TNE: if pop   <> 0 then push(1) else push(0);
 | 
						|
    TGE: if popsw >= 0 then push(1) else push(0);
 | 
						|
    TGT: if popsw >  0 then push(1) else push(0);
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure branchops;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { BRANCH GROUP }
 | 
						|
    BRA: newpc(pc+k);
 | 
						|
 | 
						|
    BLT: begin st:=popsw; if popsw <  st then newpc(pc+k) end;
 | 
						|
    BLE: begin st:=popsw; if popsw <= st then newpc(pc+k) end;
 | 
						|
    BEQ: begin t :=pop  ; if pop   =   t then newpc(pc+k) end;
 | 
						|
    BNE: begin t :=pop  ; if pop   <>  t then newpc(pc+k) end;
 | 
						|
    BGE: begin st:=popsw; if popsw >= st then newpc(pc+k) end;
 | 
						|
    BGT: begin st:=popsw; if popsw >  st then newpc(pc+k) end;
 | 
						|
 | 
						|
    ZLT: if popsw <  0 then newpc(pc+k);
 | 
						|
    ZLE: if popsw <= 0 then newpc(pc+k);
 | 
						|
    ZEQ: if pop   =  0 then newpc(pc+k);
 | 
						|
    ZNE: if pop   <> 0 then newpc(pc+k);
 | 
						|
    ZGE: if popsw >= 0 then newpc(pc+k);
 | 
						|
    ZGT: if popsw >  0 then newpc(pc+k)
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure callops;
 | 
						|
var j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { PROCEDURE CALL GROUP }
 | 
						|
    CAL: call(argp(k));
 | 
						|
    CAI: begin call(argp(popa)) end;
 | 
						|
    RET: begin k:=argz(k); if k div wsize>maxret  then trap(EILLINS);
 | 
						|
	   for j:= 1 to k div wsize do retarea[j]:=pop; retsize:=k;
 | 
						|
	   newsp(lb); lb:=maxdata+1; { To circumvent stack overflow error }
 | 
						|
	   newpc(popa);
 | 
						|
	   if pc=maxcode then
 | 
						|
	   begin
 | 
						|
	     halted:=true;
 | 
						|
	     if retsize=wsize then exitstatus:=retarea[1]
 | 
						|
	       else exitstatus:=undef
 | 
						|
	  end
 | 
						|
	  else
 | 
						|
	     newlb(popa);
 | 
						|
	 end;
 | 
						|
    LFR: begin k:=args(k); if k<>retsize then trap(EILLINS);
 | 
						|
	   for j:=k div wsize downto 1 do push(retarea[j]);
 | 
						|
	 end
 | 
						|
  end
 | 
						|
end;
 | 
						|
 | 
						|
procedure miscops;
 | 
						|
var i,j:integer;
 | 
						|
begin
 | 
						|
  case insr of
 | 
						|
    { MISCELLANEOUS GROUP }
 | 
						|
    ASP,ASS:
 | 
						|
	 begin if insr=ASS then
 | 
						|
	   begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=popsw end;
 | 
						|
	   k:=argf(k);
 | 
						|
	   if k<0
 | 
						|
	     then for j:= 1 to -k div wsize do push(undef)
 | 
						|
	     else newsp(sp+k);
 | 
						|
	 end;
 | 
						|
    BLM,BLS:
 | 
						|
	 begin if insr=BLS then
 | 
						|
	   begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=pop end;
 | 
						|
	   k:=argz(k);
 | 
						|
	   b:=popa; a:=popa;
 | 
						|
	   for j := 1 to k div wsize do
 | 
						|
	     store(b-wsize+wsize*j,memw(a-wsize+wsize*j))
 | 
						|
	 end;
 | 
						|
    CSA: begin k:=argw(k); if k<>wsize then trap(EILLINS);
 | 
						|
	   a:=popa;
 | 
						|
	   st:= popsw - signwd(memw(a+asize));
 | 
						|
	   if (st>=0) and (st<=memw(a+wsize+asize)) then
 | 
						|
	      b:=mema(a+2*wsize+asize+asize*st) else b:=mema(a);
 | 
						|
	   if b=0 then trap(ECASE) else newpc(b)
 | 
						|
	 end;
 | 
						|
    CSB: begin k:=argw(k); if k<>wsize then trap(EILLINS); a:=popa;
 | 
						|
	   t:=pop; i:=1; found:=false;
 | 
						|
	   while (i<=memw(a+asize)) and not found do
 | 
						|
	     if t=memw(a+(asize+wsize)*i) then found:=true else i:=i+1;
 | 
						|
	   if found then b:=memw(a+(asize+wsize)*i+wsize) else b:=memw(a);
 | 
						|
	   if b=0 then trap(ECASE) else newpc(b);
 | 
						|
	 end;
 | 
						|
    DCH: begin pusha(mema(popa+dynd)) end;
 | 
						|
    DUP,DUS:
 | 
						|
	 begin if insr=DUS then
 | 
						|
	      begin k:=argw(k); if k<>wsize then trap(EILLINS); k:=pop end;
 | 
						|
	   k:=args(k);
 | 
						|
	   for i:=1 to k div wsize do push(memw(sp+k-wsize));
 | 
						|
	 end;
 | 
						|
    EXG: begin
 | 
						|
	   k:=argw(k);
 | 
						|
	   for i:=1 to k div wsize do push(memw(sp+k-wsize));
 | 
						|
	   for i:=0 to k div wsize - 1 do
 | 
						|
	     store(sp+k+i*wsize,memw(sp+k+k+i*wsize));
 | 
						|
	   for i:=1 to k div wsize do
 | 
						|
	   begin t:=pop ; store(sp+k+k-wsize,t) end;
 | 
						|
	 end;
 | 
						|
    FIL: filna(argg(k));
 | 
						|
    GTO: begin k:=argg(k);
 | 
						|
	   newlb(mema(k+2*asize)); newsp(mema(k+asize)); newpc(mema(k))
 | 
						|
	 end;
 | 
						|
    LIM: push(ignmask);
 | 
						|
    LIN: lino(argn(k));
 | 
						|
    LNI: lino(memw(0)+1);
 | 
						|
    LOR: begin i:=argr(k);
 | 
						|
	   case i of 0:pusha(lb); 1:pusha(sp); 2:pusha(hp) end;
 | 
						|
	 end;
 | 
						|
    LPB: pusha(popa+statd);
 | 
						|
    MON: domon(pop);
 | 
						|
    NOP: writeln('NOP at line ',memw(0):5) ;
 | 
						|
    RCK: begin a:=popa;
 | 
						|
	   case szindex(argw(k)) of
 | 
						|
	   1: if (signwd(memw(sp))<signwd(memw(a))) or
 | 
						|
		(signwd(memw(sp))>signwd(memw(a+wsize))) then trap(ERANGE);
 | 
						|
	   2: if (memd(sp)<memd(a)) or
 | 
						|
		(memd(sp)>memd(a+2*wsize)) then trap(ERANGE);
 | 
						|
	   end
 | 
						|
	 end;
 | 
						|
    RTT: dortt;
 | 
						|
    SIG: begin a:=popa; pusha(uerrorproc); uerrorproc:=a end;
 | 
						|
    SIM: ignmask:=pop;
 | 
						|
    STR: begin i:=argr(k);
 | 
						|
	   case i of 0: newlb(popa); 1: newsp(popa); 2: newhp(popa) end;
 | 
						|
	 end;
 | 
						|
    TRP: trap(pop)
 | 
						|
  end
 | 
						|
end;
 | 
						|
.bp
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
{                               Main Loop                                   }
 | 
						|
{---------------------------------------------------------------------------}
 | 
						|
 | 
						|
begin initialize;
 | 
						|
8888:
 | 
						|
  repeat
 | 
						|
    opcode := nextpc;       { fetch the first byte of the instruction }
 | 
						|
    if opcode=escape1 then iclass:=second
 | 
						|
    else if opcode=escape2 then iclass:=tert
 | 
						|
    else iclass:=prim;
 | 
						|
    if iclass<>prim then opcode := nextpc;
 | 
						|
    with dispat[iclass][opcode] do
 | 
						|
      begin insr:=instr;
 | 
						|
	if not (zbit in iflag) then
 | 
						|
	  if ibit in iflag then k:=pop else
 | 
						|
	    begin
 | 
						|
	      if mini in iflag then k:=implicit else
 | 
						|
		begin
 | 
						|
		  if short in iflag then k:=implicit+nextpc else
 | 
						|
		    begin k:=nextpc;
 | 
						|
		      if (sbit in iflag) and (k>=128) then k:=k-256;
 | 
						|
		      for i:=2 to ilength do k:=256*k + nextpc
 | 
						|
		    end
 | 
						|
		end;
 | 
						|
	      if wbit in iflag then k:=k*wsize;
 | 
						|
	    end
 | 
						|
      end;
 | 
						|
case insr of
 | 
						|
 | 
						|
  NON: trap(EILLINS);
 | 
						|
 | 
						|
  { LOAD GROUP }
 | 
						|
  LDC,LOC,LOL,LOE,LIL,LOF,LAL,LAE,LXL,LXA,LOI,LOS,LDL,LDE,LDF,LPI:
 | 
						|
      loadops;
 | 
						|
 | 
						|
  { STORE GROUP }
 | 
						|
  STL,STE,SIL,STF,STI,STS,SDL,SDE,SDF:
 | 
						|
      storeops;
 | 
						|
 | 
						|
  { SIGNED INTEGER ARITHMETIC }
 | 
						|
  ADI,SBI,MLI,DVI,RMI,NGI,SLI,SRI:
 | 
						|
      intarith;
 | 
						|
 | 
						|
  { UNSIGNED INTEGER ARITHMETIC }
 | 
						|
  ADU,SBU,MLU,DVU,RMU,SLU,SRU:
 | 
						|
      unsarith;
 | 
						|
 | 
						|
  { FLOATING POINT ARITHMETIC }
 | 
						|
  ADF,SBF,MLF,DVF,NGF,FIF,FEF:
 | 
						|
      fltarith;
 | 
						|
 | 
						|
  { POINTER ARITHMETIC }
 | 
						|
  ADP,ADS,SBS:
 | 
						|
      ptrarith;
 | 
						|
 | 
						|
  { INCREMENT/DECREMENT/ZERO }
 | 
						|
  INC,INL,INE,DEC,DEL,DEE,ZRL,ZRE,ZER,ZRF:
 | 
						|
      incops;
 | 
						|
 | 
						|
  { CONVERT GROUP }
 | 
						|
  CII,CIU,CIF,CUI,CUU,CUF,CFI,CFU,CFF:
 | 
						|
      convops;
 | 
						|
 | 
						|
  { LOGICAL GROUP }
 | 
						|
 XAND,IOR,XOR,COM,ROL,ROR:
 | 
						|
      logops;
 | 
						|
 | 
						|
  { SET GROUP }
 | 
						|
  INN,XSET:
 | 
						|
      setops;
 | 
						|
 | 
						|
  { ARRAY GROUP }
 | 
						|
  LAR,SAR,AAR:
 | 
						|
      arrops;
 | 
						|
 | 
						|
  { COMPARE GROUP }
 | 
						|
  CMI,CMU,CMP,CMF,CMS,  TLT,TLE,TEQ,TNE,TGE,TGT:
 | 
						|
      cmpops;
 | 
						|
 | 
						|
  { BRANCH GROUP }
 | 
						|
  BRA,  BLT,BLE,BEQ,BNE,BGE,BGT,  ZLT,ZLE,ZEQ,ZNE,ZGE,ZGT:
 | 
						|
      branchops;
 | 
						|
 | 
						|
  { PROCEDURE CALL GROUP }
 | 
						|
  CAL,CAI,RET,LFR:
 | 
						|
      callops;
 | 
						|
 | 
						|
  { MISCELLANEOUS GROUP }
 | 
						|
  ASP,ASS,BLM,BLS,CSA,CSB,DCH,DUP,DUS,EXG,FIL,GTO,LIM,
 | 
						|
  LIN,LNI,LOR,LPB,MON,NOP,RCK,RTT,SIG,SIM,STR,TRP:
 | 
						|
      miscops;
 | 
						|
 | 
						|
    end;        { end of case statement }
 | 
						|
    if not ( (insr=RET) or (insr=ASP) or (insr=BRA) or (insr=GTO) ) then
 | 
						|
	retsize:=0 ;
 | 
						|
  until halted;
 | 
						|
9999:
 | 
						|
  writeln('halt with exit status: ',exitstatus:1);
 | 
						|
  doident;
 | 
						|
end.
 | 
						|
.ft P
 | 
						|
.lg 1
 | 
						|
.fi
 |