ack/plat/linux68k/emu/musashi/example/sim.c
2018-06-05 17:04:47 +09:00

562 lines
13 KiB
C
Executable file

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <time.h>
#include "sim.h"
#include "m68k.h"
#include "osd.h"
void disassemble_program();
/* Memory-mapped IO ports */
#define INPUT_ADDRESS 0x800000
#define OUTPUT_ADDRESS 0x400000
/* IRQ connections */
#define IRQ_NMI_DEVICE 7
#define IRQ_INPUT_DEVICE 2
#define IRQ_OUTPUT_DEVICE 1
/* Time between characters sent to output device (seconds) */
#define OUTPUT_DEVICE_PERIOD 1
/* ROM and RAM sizes */
#define MAX_ROM 0xfff
#define MAX_RAM 0xff
/* Read/write macros */
#define READ_BYTE(BASE, ADDR) (BASE)[ADDR]
#define READ_WORD(BASE, ADDR) (((BASE)[ADDR]<<8) | \
(BASE)[(ADDR)+1])
#define READ_LONG(BASE, ADDR) (((BASE)[ADDR]<<24) | \
((BASE)[(ADDR)+1]<<16) | \
((BASE)[(ADDR)+2]<<8) | \
(BASE)[(ADDR)+3])
#define WRITE_BYTE(BASE, ADDR, VAL) (BASE)[ADDR] = (VAL)&0xff
#define WRITE_WORD(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>8) & 0xff; \
(BASE)[(ADDR)+1] = (VAL)&0xff
#define WRITE_LONG(BASE, ADDR, VAL) (BASE)[ADDR] = ((VAL)>>24) & 0xff; \
(BASE)[(ADDR)+1] = ((VAL)>>16)&0xff; \
(BASE)[(ADDR)+2] = ((VAL)>>8)&0xff; \
(BASE)[(ADDR)+3] = (VAL)&0xff
/* Prototypes */
void exit_error(char* fmt, ...);
unsigned int cpu_read_byte(unsigned int address);
unsigned int cpu_read_word(unsigned int address);
unsigned int cpu_read_long(unsigned int address);
void cpu_write_byte(unsigned int address, unsigned int value);
void cpu_write_word(unsigned int address, unsigned int value);
void cpu_write_long(unsigned int address, unsigned int value);
void cpu_pulse_reset(void);
void cpu_set_fc(unsigned int fc);
int cpu_irq_ack(int level);
void nmi_device_reset(void);
void nmi_device_update(void);
int nmi_device_ack(void);
void input_device_reset(void);
void input_device_update(void);
int input_device_ack(void);
unsigned int input_device_read(void);
void input_device_write(unsigned int value);
void output_device_reset(void);
void output_device_update(void);
int output_device_ack(void);
unsigned int output_device_read(void);
void output_device_write(unsigned int value);
void int_controller_set(unsigned int value);
void int_controller_clear(unsigned int value);
void get_user_input(void);
/* Data */
unsigned int g_quit = 0; /* 1 if we want to quit */
unsigned int g_nmi = 0; /* 1 if nmi pending */
int g_input_device_value = -1; /* Current value in input device */
unsigned int g_output_device_ready = 0; /* 1 if output device is ready */
time_t g_output_device_last_output; /* Time of last char output */
unsigned int g_int_controller_pending = 0; /* list of pending interrupts */
unsigned int g_int_controller_highest_int = 0; /* Highest pending interrupt */
unsigned char g_rom[MAX_ROM+1]; /* ROM */
unsigned char g_ram[MAX_RAM+1]; /* RAM */
unsigned int g_fc; /* Current function code from CPU */
/* Exit with an error message. Use printf syntax. */
void exit_error(char* fmt, ...)
{
static int guard_val = 0;
char buff[100];
unsigned int pc;
va_list args;
if(guard_val)
return;
else
guard_val = 1;
va_start(args, fmt);
vfprintf(stderr, fmt, args);
va_end(args);
fprintf(stderr, "\n");
pc = m68k_get_reg(NULL, M68K_REG_PPC);
m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
fprintf(stderr, "At %04x: %s\n", pc, buff);
exit(EXIT_FAILURE);
}
/* Read data from RAM, ROM, or a device */
unsigned int cpu_read_byte(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read byte from ROM address %08x", address);
return READ_BYTE(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read byte from RAM address %08x", address);
return READ_BYTE(g_ram, address);
}
unsigned int cpu_read_word(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read word from ROM address %08x", address);
return READ_WORD(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read word from RAM address %08x", address);
return READ_WORD(g_ram, address);
}
unsigned int cpu_read_long(unsigned int address)
{
if(g_fc & 2) /* Program */
{
if(address > MAX_ROM)
exit_error("Attempted to read long from ROM address %08x", address);
return READ_LONG(g_rom, address);
}
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
return input_device_read();
case OUTPUT_ADDRESS:
return output_device_read();
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to read long from RAM address %08x", address);
return READ_LONG(g_ram, address);
}
unsigned int cpu_read_word_dasm(unsigned int address)
{
if(address > MAX_ROM)
exit_error("Disassembler attempted to read word from ROM address %08x", address);
return READ_WORD(g_rom, address);
}
unsigned int cpu_read_long_dasm(unsigned int address)
{
if(address > MAX_ROM)
exit_error("Dasm attempted to read long from ROM address %08x", address);
return READ_LONG(g_rom, address);
}
/* Write data to RAM or a device */
void cpu_write_byte(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %02x to ROM address %08x", value&0xff, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value&0xff);
return;
case OUTPUT_ADDRESS:
output_device_write(value&0xff);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %02x to RAM address %08x", value&0xff, address);
WRITE_BYTE(g_ram, address, value);
}
void cpu_write_word(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %04x to ROM address %08x", value&0xffff, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value&0xffff);
return;
case OUTPUT_ADDRESS:
output_device_write(value&0xffff);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %04x to RAM address %08x", value&0xffff, address);
WRITE_WORD(g_ram, address, value);
}
void cpu_write_long(unsigned int address, unsigned int value)
{
if(g_fc & 2) /* Program */
exit_error("Attempted to write %08x to ROM address %08x", value, address);
/* Otherwise it's data space */
switch(address)
{
case INPUT_ADDRESS:
input_device_write(value);
return;
case OUTPUT_ADDRESS:
output_device_write(value);
return;
default:
break;
}
if(address > MAX_RAM)
exit_error("Attempted to write %08x to RAM address %08x", value, address);
WRITE_LONG(g_ram, address, value);
}
/* Called when the CPU pulses the RESET line */
void cpu_pulse_reset(void)
{
nmi_device_reset();
output_device_reset();
input_device_reset();
}
/* Called when the CPU changes the function code pins */
void cpu_set_fc(unsigned int fc)
{
g_fc = fc;
}
/* Called when the CPU acknowledges an interrupt */
int cpu_irq_ack(int level)
{
switch(level)
{
case IRQ_NMI_DEVICE:
return nmi_device_ack();
case IRQ_INPUT_DEVICE:
return input_device_ack();
case IRQ_OUTPUT_DEVICE:
return output_device_ack();
}
return M68K_INT_ACK_SPURIOUS;
}
/* Implementation for the NMI device */
void nmi_device_reset(void)
{
g_nmi = 0;
}
void nmi_device_update(void)
{
if(g_nmi)
{
g_nmi = 0;
int_controller_set(IRQ_NMI_DEVICE);
}
}
int nmi_device_ack(void)
{
printf("\nNMI\n");fflush(stdout);
int_controller_clear(IRQ_NMI_DEVICE);
return M68K_INT_ACK_AUTOVECTOR;
}
/* Implementation for the input device */
void input_device_reset(void)
{
g_input_device_value = -1;
int_controller_clear(IRQ_INPUT_DEVICE);
}
void input_device_update(void)
{
if(g_input_device_value >= 0)
int_controller_set(IRQ_INPUT_DEVICE);
}
int input_device_ack(void)
{
return M68K_INT_ACK_AUTOVECTOR;
}
unsigned int input_device_read(void)
{
int value = g_input_device_value > 0 ? g_input_device_value : 0;
int_controller_clear(IRQ_INPUT_DEVICE);
g_input_device_value = -1;
return value;
}
void input_device_write(unsigned int value)
{
}
/* Implementation for the output device */
void output_device_reset(void)
{
g_output_device_last_output = time(NULL);
g_output_device_ready = 0;
int_controller_clear(IRQ_OUTPUT_DEVICE);
}
void output_device_update(void)
{
if(!g_output_device_ready)
{
if((time(NULL) - g_output_device_last_output) >= OUTPUT_DEVICE_PERIOD)
{
g_output_device_ready = 1;
int_controller_set(IRQ_OUTPUT_DEVICE);
}
}
}
int output_device_ack(void)
{
return M68K_INT_ACK_AUTOVECTOR;
}
unsigned int output_device_read(void)
{
int_controller_clear(IRQ_OUTPUT_DEVICE);
return 0;
}
void output_device_write(unsigned int value)
{
char ch;
if(g_output_device_ready)
{
ch = value & 0xff;
printf("%c", ch);
g_output_device_last_output = time(NULL);
g_output_device_ready = 0;
int_controller_clear(IRQ_OUTPUT_DEVICE);
}
}
/* Implementation for the interrupt controller */
void int_controller_set(unsigned int value)
{
unsigned int old_pending = g_int_controller_pending;
g_int_controller_pending |= (1<<value);
if(old_pending != g_int_controller_pending && value > g_int_controller_highest_int)
{
g_int_controller_highest_int = value;
m68k_set_irq(g_int_controller_highest_int);
}
}
void int_controller_clear(unsigned int value)
{
g_int_controller_pending &= ~(1<<value);
for(g_int_controller_highest_int = 7;g_int_controller_highest_int > 0;g_int_controller_highest_int--)
if(g_int_controller_pending & (1<<g_int_controller_highest_int))
break;
m68k_set_irq(g_int_controller_highest_int);
}
/* Parse user input and update any devices that need user input */
void get_user_input(void)
{
static int last_ch = -1;
int ch = osd_get_char();
if(ch >= 0)
{
switch(ch)
{
case 0x1b:
g_quit = 1;
break;
case '~':
if(last_ch != ch)
g_nmi = 1;
break;
default:
g_input_device_value = ch;
}
}
last_ch = ch;
}
/* Disassembler */
void make_hex(char* buff, unsigned int pc, unsigned int length)
{
char* ptr = buff;
for(;length>0;length -= 2)
{
sprintf(ptr, "%04x", cpu_read_word_dasm(pc));
pc += 2;
ptr += 4;
if(length > 2)
*ptr++ = ' ';
}
}
void disassemble_program()
{
unsigned int pc;
unsigned int instr_size;
char buff[100];
char buff2[100];
pc = cpu_read_long_dasm(4);
while(pc <= 0x16e)
{
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
make_hex(buff2, pc, instr_size);
printf("%03x: %-20s: %s\n", pc, buff2, buff);
pc += instr_size;
}
fflush(stdout);
}
void cpu_instr_callback()
{
/* The following code would print out instructions as they are executed */
/*
static char buff[100];
static char buff2[100];
static unsigned int pc;
static unsigned int instr_size;
pc = m68k_get_reg(NULL, M68K_REG_PC);
instr_size = m68k_disassemble(buff, pc, M68K_CPU_TYPE_68000);
make_hex(buff2, pc, instr_size);
printf("E %03x: %-20s: %s\n", pc, buff2, buff);
fflush(stdout);
*/
}
/* The main loop */
int main(int argc, char* argv[])
{
FILE* fhandle;
if(argc != 2)
{
printf("Usage: sim <program file>\n");
exit(-1);
}
if((fhandle = fopen(argv[1], "rb")) == NULL)
exit_error("Unable to open %s", argv[1]);
if(fread(g_rom, 1, MAX_ROM+1, fhandle) <= 0)
exit_error("Error reading %s", argv[1]);
// disassemble_program();
m68k_init();
m68k_set_cpu_type(M68K_CPU_TYPE_68000);
m68k_pulse_reset();
input_device_reset();
output_device_reset();
nmi_device_reset();
g_quit = 0;
while(!g_quit)
{
// Our loop requires some interleaving to allow us to update the
// input, output, and nmi devices.
get_user_input();
// Values to execute determine the interleave rate.
// Smaller values allow for more accurate interleaving with multiple
// devices/CPUs but is more processor intensive.
// 100000 is usually a good value to start at, then work from there.
// Note that I am not emulating the correct clock speed!
m68k_execute(100000);
output_device_update();
input_device_update();
nmi_device_update();
}
return 0;
}