124 lines
		
	
	
	
		
			2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			124 lines
		
	
	
	
		
			2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | 
						|
 * See the copyright notice in the ACK home directory, in the file "Copyright".
 | 
						|
 *
 | 
						|
 * Author: Ceriel J.H. Jacobs
 | 
						|
 */
 | 
						|
 | 
						|
/* $Id$ */
 | 
						|
#define __NO_DEFS
 | 
						|
#include <math.h>
 | 
						|
#include "pc.h"
 | 
						|
 | 
						|
#if __STDC__
 | 
						|
#include <float.h>
 | 
						|
#define M_MIN_D DBL_MIN
 | 
						|
#define M_MAX_D DBL_MAX
 | 
						|
#define M_DMINEXP DBL_MIN_EXP
 | 
						|
#endif
 | 
						|
#undef HUGE
 | 
						|
#define HUGE 1e1000
 | 
						|
 | 
						|
static double Ldexp(double fl, int exp)
 | 
						|
{
 | 
						|
	int sign = 1;
 | 
						|
	int currexp;
 | 
						|
 | 
						|
	if (fl < 0)
 | 
						|
	{
 | 
						|
		fl = -fl;
 | 
						|
		sign = -1;
 | 
						|
	}
 | 
						|
	fl = _fef(fl, &currexp);
 | 
						|
	exp += currexp;
 | 
						|
	if (exp > 0)
 | 
						|
	{
 | 
						|
		while (exp > 30)
 | 
						|
		{
 | 
						|
			fl *= (double)(1L << 30);
 | 
						|
			exp -= 30;
 | 
						|
		}
 | 
						|
		fl *= (double)(1L << exp);
 | 
						|
	}
 | 
						|
	else
 | 
						|
	{
 | 
						|
		while (exp < -30)
 | 
						|
		{
 | 
						|
			fl /= (double)(1L << 30);
 | 
						|
			exp += 30;
 | 
						|
		}
 | 
						|
		fl /= (double)(1L << -exp);
 | 
						|
	}
 | 
						|
	return sign * fl;
 | 
						|
}
 | 
						|
 | 
						|
double _exp(double x)
 | 
						|
{
 | 
						|
	/*	Algorithm and coefficients from:
 | 
						|
			"Software manual for the elementary functions"
 | 
						|
			by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | 
						|
	*/
 | 
						|
 | 
						|
	static double p[] = {
 | 
						|
		0.25000000000000000000e+0,
 | 
						|
		0.75753180159422776666e-2,
 | 
						|
		0.31555192765684646356e-4
 | 
						|
	};
 | 
						|
 | 
						|
	static double q[] = {
 | 
						|
		0.50000000000000000000e+0,
 | 
						|
		0.56817302698551221787e-1,
 | 
						|
		0.63121894374398503557e-3,
 | 
						|
		0.75104028399870046114e-6
 | 
						|
	};
 | 
						|
	double xn, g;
 | 
						|
	int n;
 | 
						|
	int negative = x < 0;
 | 
						|
 | 
						|
	if (x <= M_LN_MIN_D)
 | 
						|
	{
 | 
						|
		g = M_MIN_D / 4.0;
 | 
						|
 | 
						|
		if (g != 0.0)
 | 
						|
		{
 | 
						|
			/* unnormalized numbers apparently exist */
 | 
						|
			if (x < (M_LN2 * (M_DMINEXP - 53)))
 | 
						|
				return 0.0;
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (x < M_LN_MIN_D)
 | 
						|
				return 0.0;
 | 
						|
			return M_MIN_D;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (x >= M_LN_MAX_D)
 | 
						|
	{
 | 
						|
		if (x > M_LN_MAX_D)
 | 
						|
		{
 | 
						|
			_trp(EEXP);
 | 
						|
			return HUGE;
 | 
						|
		}
 | 
						|
		return M_MAX_D;
 | 
						|
	}
 | 
						|
	if (negative)
 | 
						|
		x = -x;
 | 
						|
 | 
						|
	n = x * M_LOG2E + 0.5; /* 1/ln(2) = log2(e), 0.5 added for rounding */
 | 
						|
	xn = n;
 | 
						|
	{
 | 
						|
		double x1 = (long)x;
 | 
						|
		double x2 = x - x1;
 | 
						|
 | 
						|
		g = ((x1 - xn * 0.693359375) + x2) - xn * (-2.1219444005469058277e-4);
 | 
						|
	}
 | 
						|
	if (negative)
 | 
						|
	{
 | 
						|
		g = -g;
 | 
						|
		n = -n;
 | 
						|
	}
 | 
						|
	xn = g * g;
 | 
						|
	x = g * POLYNOM2(xn, p);
 | 
						|
	n += 1;
 | 
						|
	return (Ldexp(0.5 + x / (POLYNOM3(xn, q) - x), n));
 | 
						|
}
 |