573 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Modula-2
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			Modula-2
		
	
	
	
	
	
| (*
 | |
|   (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|   See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
| *)
 | |
| 
 | |
| (*$R-*)
 | |
| IMPLEMENTATION MODULE Mathlib;
 | |
| (*
 | |
|   Module:	Mathematical functions
 | |
|   Author:	Ceriel J.H. Jacobs
 | |
|   Version:	$Header$
 | |
| *)
 | |
| 
 | |
|   FROM EM IMPORT FIF, FEF;
 | |
|   FROM Traps IMPORT Message;
 | |
| 
 | |
|   CONST
 | |
| 	OneRadianInDegrees	= 57.295779513082320876798155D;
 | |
| 	OneDegreeInRadians	=  0.017453292519943295769237D;
 | |
| 	Sqrt2			= 1.41421356237309504880168872420969808D;
 | |
| 	OneOverSqrt2		= 0.70710678118654752440084436210484904D;
 | |
| 
 | |
|   (* basic functions *)
 | |
| 
 | |
|   PROCEDURE pow(x: REAL; i: INTEGER): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longpow(LONG(x), i));
 | |
|   END pow;
 | |
| 
 | |
|   PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
 | |
|     VAR	val: LONGREAL;
 | |
| 	ri: LONGREAL;
 | |
|   BEGIN
 | |
| 	ri := FLOATD(i);
 | |
| 	IF x < 0.0D THEN
 | |
| 		val := longexp(longln(-x) * ri);
 | |
| 		IF ODD(i) THEN RETURN -val;
 | |
| 		ELSE RETURN val;
 | |
| 		END;
 | |
| 	ELSIF x = 0.0D THEN
 | |
| 		RETURN 0.0D;
 | |
| 	ELSE
 | |
| 		RETURN longexp(longln(x) * ri);
 | |
| 	END;
 | |
|   END longpow;
 | |
| 
 | |
|   PROCEDURE sqrt(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsqrt(LONG(x)));
 | |
|   END sqrt;
 | |
| 
 | |
|   PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
 | |
|     VAR
 | |
| 	temp: LONGREAL;
 | |
| 	exp, i: INTEGER;
 | |
|   BEGIN
 | |
| 	IF x <= 0.0D THEN
 | |
| 		IF x < 0.0D THEN
 | |
| 			Message("sqrt: negative argument");
 | |
| 			HALT
 | |
| 		END;
 | |
| 		RETURN 0.0D;
 | |
| 	END;
 | |
| 	temp := FEF(x,exp);
 | |
| 	(*
 | |
| 	 * NOTE
 | |
| 	 * this wont work on 1's comp
 | |
| 	 *)
 | |
| 	IF ODD(exp) THEN
 | |
| 		temp := 2.0D * temp;
 | |
| 		DEC(exp);
 | |
| 	END;
 | |
| 	temp := 0.5D*(1.0D + temp);
 | |
| 
 | |
| 	WHILE exp > 28 DO
 | |
| 		temp := temp * 16384.0D;
 | |
| 		exp := exp - 28;
 | |
| 	END;
 | |
| 	WHILE exp < -28 DO
 | |
| 		temp := temp / 16384.0D;
 | |
| 		exp := exp + 28;
 | |
| 	END;
 | |
| 	WHILE exp >= 2 DO
 | |
| 		temp := temp * 2.0D;
 | |
| 		exp := exp - 2;
 | |
| 	END;
 | |
| 	WHILE exp <= -2 DO
 | |
| 		temp := temp / 2.0D;
 | |
| 		exp := exp + 2;
 | |
| 	END;
 | |
| 	FOR i := 0 TO 5 DO
 | |
| 		temp := 0.5D*(temp + x/temp);
 | |
| 	END;
 | |
| 	RETURN temp;
 | |
|   END longsqrt;
 | |
| 
 | |
|   PROCEDURE exp(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longexp(LONG(x)));
 | |
|   END exp;
 | |
| 
 | |
|   PROCEDURE longexp(x: LONGREAL): LONGREAL;
 | |
|   (*      2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] *)
 | |
|   (*      Hart & Cheney #1069 *)
 | |
|     CONST
 | |
| 	p0 = 0.2080384346694663001443843411D+07;
 | |
| 	p1 = 0.3028697169744036299076048876D+05;
 | |
| 	p2 = 0.6061485330061080841615584556D+02;
 | |
| 	q0 = 0.6002720360238832528230907598D+07;
 | |
| 	q1 = 0.3277251518082914423057964422D+06;
 | |
| 	q2 = 0.1749287689093076403844945335D+04;
 | |
| 	q3 = 0.1000000000000000000000000000D+01;
 | |
| 
 | |
|     VAR
 | |
| 	neg: BOOLEAN;
 | |
| 	xPxx, Qxx: LONGREAL;
 | |
| 	n: LONGREAL;
 | |
| 	n1 : INTEGER;
 | |
| 	xsq : LONGREAL;
 | |
| 	large: BOOLEAN;
 | |
|   BEGIN
 | |
| 	neg := x < 0.0D;
 | |
| 	IF neg THEN
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	x := FIF(x/longln2, 1.0D, n);
 | |
| 	large := x > 0.5D;
 | |
| 	IF large THEN x := x - 0.5D; END;
 | |
| 	xsq := x*x;
 | |
| 	xPxx := x*((p2*xsq+p1)*xsq+p0);
 | |
| 	Qxx := ((q3*xsq+q2)*xsq+q1)*xsq+q0;
 | |
| 	x := (Qxx + xPxx)/(Qxx - xPxx);
 | |
| 	IF large THEN
 | |
| 		x := x * Sqrt2;
 | |
| 	END;
 | |
| 	n1 := TRUNCD(n + 0.5D);
 | |
| 	WHILE n1 >= 16 DO
 | |
| 		x := x * 65536.0D;
 | |
| 		n1 := n1 - 16;
 | |
| 	END;
 | |
| 	WHILE n1 > 0 DO
 | |
| 		x := x * 2.0D;
 | |
| 		DEC(n1);
 | |
| 	END;
 | |
| 	IF neg THEN RETURN 1.0D/x; END;
 | |
| 	RETURN x;
 | |
|   END longexp;
 | |
| 
 | |
|   PROCEDURE ln(x: REAL): REAL;	(* natural log *)
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longln(LONG(x)));
 | |
|   END ln;
 | |
| 
 | |
|   PROCEDURE longln(x: LONGREAL): LONGREAL;	(* natural log *)
 | |
|   (* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)]
 | |
|      Hart & Cheney #2707
 | |
|   *)
 | |
|     CONST
 | |
| 	p0 =  0.7504094990777122217455611007D+02;
 | |
| 	p1 = -0.1345669115050430235318253537D+03;
 | |
| 	p2 =  0.7413719213248602512779336470D+02;
 | |
| 	p3 = -0.1277249755012330819984385000D+02;
 | |
| 	p4 =  0.3327108381087686938144000000D+00;
 | |
| 	q0 =  0.3752047495388561108727775374D+02;
 | |
| 	q1 = -0.7979028073715004879439951583D+02;
 | |
| 	q2 =  0.5616126132118257292058560360D+02;
 | |
| 	q3 = -0.1450868091858082685362325000D+02;
 | |
| 	q4 =  0.1000000000000000000000000000D+01;
 | |
|     VAR
 | |
| 	exp: INTEGER;
 | |
| 	z, zsq: LONGREAL;
 | |
| 
 | |
|   BEGIN
 | |
| 	IF x <= 0.0D THEN
 | |
| 		Message("ln: argument <= 0");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	x := FEF(x, exp);
 | |
| 	WHILE x < OneOverSqrt2 DO
 | |
| 		x := x + x;
 | |
| 		DEC(exp);
 | |
| 	END;
 | |
| 	z := (x - 1.0D) / (x + 1.0D);
 | |
| 	zsq := z*z;
 | |
| 	RETURN z * ((((p4*zsq+p3)*zsq+p2)*zsq+p1)*zsq+p0) /
 | |
| 		   ((((q4*zsq+q3)*zsq+q2)*zsq+q1)*zsq+q0) +
 | |
| 		FLOATD(exp) * longln2;
 | |
|   END longln;
 | |
| 
 | |
|   PROCEDURE log(x: REAL): REAL;	(* log with base 10 *)
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longlog(LONG(x)));
 | |
|   END log;
 | |
| 
 | |
|   PROCEDURE longlog(x: LONGREAL): LONGREAL;	(* log with base 10 *)
 | |
|   BEGIN
 | |
| 	RETURN longln(x)/longln10;
 | |
|   END longlog;
 | |
| 
 | |
|   (* trigonometric functions; arguments in radians *)
 | |
| 
 | |
|   PROCEDURE sin(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsin(LONG(x)));
 | |
|   END sin;
 | |
| 
 | |
|   PROCEDURE sinus(x: LONGREAL; quadrant: INTEGER) : LONGREAL;
 | |
|   (* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1]
 | |
|      Hart & Cheney # 3374
 | |
|   *)
 | |
|     CONST
 | |
| 	p0 =  0.4857791909822798473837058825D+10;
 | |
| 	p1 = -0.1808816670894030772075877725D+10;
 | |
| 	p2 =  0.1724314784722489597789244188D+09;
 | |
| 	p3 = -0.6351331748520454245913645971D+07;
 | |
| 	p4 =  0.1002087631419532326179108883D+06;
 | |
| 	p5 = -0.5830988897678192576148973679D+03;
 | |
| 	q0 =  0.3092566379840468199410228418D+10;
 | |
| 	q1 =  0.1202384907680254190870913060D+09;
 | |
| 	q2 =  0.2321427631602460953669856368D+07;
 | |
| 	q3 =  0.2848331644063908832127222835D+05;
 | |
| 	q4 =  0.2287602116741682420054505174D+03;
 | |
| 	q5 =  0.1000000000000000000000000000D+01;
 | |
| 	A1 =  6.2822265625D;
 | |
| 	A2 =  0.00095874467958647692528676655900576D;
 | |
|     VAR
 | |
| 	xsq, x1, x2, n : LONGREAL;
 | |
| 	t : INTEGER;
 | |
|   BEGIN
 | |
| 	IF x < 0.0D THEN
 | |
| 		INC(quadrant, 2);
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	IF longhalfpi - x = longhalfpi THEN
 | |
| 		CASE quadrant OF
 | |
| 		| 0,2:
 | |
| 			RETURN 0.0D;
 | |
| 		| 1:
 | |
| 			RETURN 1.0D;
 | |
| 		| 3:
 | |
| 			RETURN -1.0D;
 | |
| 		END;
 | |
| 	END;
 | |
| 	IF x >= longtwicepi THEN
 | |
| 		IF x <= FLOATD(MAX(LONGINT)) THEN
 | |
| 		(*      Use extended precision to calculate reduced argument.
 | |
|                         Split 2pi in 2 parts a1 and a2, of which the first only
 | |
|                         uses some bits of the mantissa, so that n * a1 is
 | |
|                         exactly representable, where n is the integer part of
 | |
|                         x/pi.
 | |
|                         Here we used 12 bits of the mantissa for a1.
 | |
| 	                Also split x in integer part x1 and fraction part x2.
 | |
| 	                We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
 | |
| 		*)
 | |
| 			n := FLOATD(TRUNCD(x/longtwicepi));
 | |
| 			x1 := FLOATD(TRUNCD(x));
 | |
| 			x2 := x - x1;
 | |
| 			x := ((x1 - n * A1) + x2) - n * A2;
 | |
| 		ELSE
 | |
| 			x := FIF(x/longtwicepi, 1.0D, x1) * longtwicepi;
 | |
| 		END
 | |
| 	END;
 | |
| 	x := x / longhalfpi;
 | |
| 	t := TRUNC(x);
 | |
| 	x := x - FLOATD(t);
 | |
| 	quadrant := (quadrant + t MOD 4) MOD 4;
 | |
| 	IF ODD(quadrant) THEN
 | |
| 		x := 1.0D - x;
 | |
| 	END;
 | |
| 	IF quadrant > 1 THEN
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	xsq := x * x;
 | |
| 	RETURN x * (((((p5*xsq+p4)*xsq+p3)*xsq+p2)*xsq+p1)*xsq+p0) /
 | |
| 		   (((((q5*xsq+q4)*xsq+q3)*xsq+q2)*xsq+q1)*xsq+q0);
 | |
|   END sinus;
 | |
| 		
 | |
|   PROCEDURE longsin(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN sinus(x, 0);
 | |
|   END longsin;
 | |
| 
 | |
|   PROCEDURE cos(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longcos(LONG(x)));
 | |
|   END cos;
 | |
| 
 | |
|   PROCEDURE longcos(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF x < 0.0D THEN x := -x; END;
 | |
| 	RETURN sinus(x, 1);	
 | |
|   END longcos;
 | |
| 
 | |
|   PROCEDURE tan(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longtan(LONG(x)));
 | |
|   END tan;
 | |
| 
 | |
|   PROCEDURE longtan(x: LONGREAL): LONGREAL;
 | |
|     VAR cosinus: LONGREAL;
 | |
|   BEGIN
 | |
| 	cosinus := longcos(x);
 | |
| 	IF cosinus = 0.0D THEN
 | |
| 		Message("tan: result does not exist");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	RETURN longsin(x)/cosinus;
 | |
|   END longtan;
 | |
| 
 | |
|   PROCEDURE arcsin(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarcsin(LONG(x)));
 | |
|   END arcsin;
 | |
| 
 | |
|   PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL;
 | |
|   VAR
 | |
| 	negative : BOOLEAN;
 | |
|   BEGIN
 | |
| 	negative := x <= 0.0D;
 | |
| 	IF negative THEN x := -x; END;
 | |
| 	IF x > 1.0D THEN
 | |
| 		Message("arcsin or arccos: argument > 1");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	IF x = 1.0D THEN
 | |
| 		x := longhalfpi;
 | |
| 	ELSE
 | |
| 		x := longarctan(x/longsqrt(1.0D - x*x));
 | |
| 	END;
 | |
| 	IF negative THEN x := -x; END;
 | |
| 	IF cosfl THEN
 | |
| 		RETURN longhalfpi - x;
 | |
| 	END;
 | |
| 	RETURN x;
 | |
|   END arcsincos;	
 | |
| 
 | |
|   PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN arcsincos(x, FALSE);
 | |
|   END longarcsin;
 | |
| 
 | |
|   PROCEDURE arccos(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarccos(LONG(x)));
 | |
|   END arccos;
 | |
| 
 | |
|   PROCEDURE longarccos(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN arcsincos(x, TRUE);
 | |
|   END longarccos;
 | |
| 
 | |
|   PROCEDURE arctan(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarctan(LONG(x)));
 | |
|   END arctan;
 | |
| 
 | |
|   TYPE
 | |
| 	precomputed = RECORD
 | |
| 			X:	LONGREAL;	(* partition point *)
 | |
| 			arctan:	LONGREAL;	(* arctan of evaluation node *)
 | |
| 			OneOverXn: LONGREAL;	(* 1/xn *)
 | |
| 			OneOverXnSquarePlusone: LONGREAL;	(* ... *)
 | |
| 		      END;
 | |
| 
 | |
|   VAR	arctaninit: BOOLEAN;
 | |
| 	precomp : ARRAY[0..4] OF precomputed;
 | |
| 
 | |
|   PROCEDURE longarctan(x: LONGREAL): LONGREAL;
 | |
|   (*      The interval [0, infinity) is treated as follows:
 | |
| 	  Define partition points Xi
 | |
| 	          X0 = 0
 | |
| 	          X1 = tan(pi/16)
 | |
| 		  X2 = tan(3pi/16)
 | |
| 		  X3 = tan(5pi/16)
 | |
| 		  X4 = tan(7pi/16)
 | |
| 		  X5 = infinity
 | |
|           and evaluation nodes xi
 | |
| 	          x2 = tan(2pi/16)
 | |
| 	          x3 = tan(4pi/16)
 | |
| 		  x4 = tan(6pi/16)
 | |
| 		  x5 = infinity
 | |
|           An argument x in [Xn-1, Xn] is now reduced to an argument
 | |
|           t in [-X1, X1] by the following formulas:
 | |
| 
 | |
|                    t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x)
 | |
| 
 | |
|                    arctan(x) = arctan(xi) + arctan(t)
 | |
| 
 | |
|           For the interval [0, p/16] an approximation is used:
 | |
|                    arctan(x) = x * P(x*x)/Q(x*x)
 | |
|   *)
 | |
|   (* Hart & Cheney # 5037 *)
 | |
|     CONST
 | |
| 	p0 = 0.7698297257888171026986294745D+03;
 | |
| 	p1 = 0.1557282793158363491416585283D+04;
 | |
| 	p2 = 0.1033384651675161628243434662D+04;
 | |
| 	p3 = 0.2485841954911840502660889866D+03;
 | |
| 	p4 = 0.1566564964979791769948970100D+02;
 | |
| 	q0 = 0.7698297257888171026986294911D+03;
 | |
| 	q1 = 0.1813892701754635858982709369D+04;
 | |
| 	q2 = 0.1484049607102276827437401170D+04;
 | |
| 	q3 = 0.4904645326203706217748848797D+03;
 | |
| 	q4 = 0.5593479839280348664778328000D+02;
 | |
| 	q5 = 0.1000000000000000000000000000D+01;
 | |
|     VAR
 | |
| 	xsqr: LONGREAL;
 | |
| 	neg: BOOLEAN;
 | |
| 	i: INTEGER;
 | |
|   BEGIN
 | |
| 	IF NOT arctaninit THEN
 | |
| 		arctaninit := TRUE;
 | |
| 		WITH precomp[0] DO
 | |
| 			X := 0.19891236737965800691159762264467622;
 | |
| 			arctan := 0.0D;
 | |
| 			OneOverXn := 0.0D;
 | |
| 			OneOverXnSquarePlusone := 0.0D;
 | |
| 		END;
 | |
| 		WITH precomp[1] DO
 | |
| 			X := 0.66817863791929891999775768652308076;
 | |
| 			arctan := longpi/8.0D;
 | |
| 			OneOverXn := 2.41421356237309504880168872420969808;
 | |
| 			OneOverXnSquarePlusone := 6.82842712474619009760337744841939616;
 | |
| 		END;
 | |
| 		WITH precomp[2] DO
 | |
| 			X := 1.49660576266548901760113513494247691;
 | |
| 			arctan := longquartpi;
 | |
| 			OneOverXn := 1.0;
 | |
| 			OneOverXnSquarePlusone := 2.0;
 | |
| 		END;
 | |
| 		WITH precomp[3] DO
 | |
| 			X := 5.02733949212584810451497507106407238;
 | |
| 			arctan := 3.0D*longpi/8.0D;
 | |
| 			OneOverXn := 0.41421356237309504880168872420969808;
 | |
| 			OneOverXnSquarePlusone := 1.17157287525380998659662255158060384;
 | |
| 		END;
 | |
| 		WITH precomp[4] DO
 | |
| 			X := 0.0;
 | |
| 			arctan := longhalfpi;
 | |
| 			OneOverXn := 0.0;
 | |
| 			OneOverXnSquarePlusone := 1.0;
 | |
| 		END;
 | |
| 	END;
 | |
| 	neg := FALSE;
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := TRUE;
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	i := 0;
 | |
| 	WHILE (i <= 3) AND (x <= precomp[i].X) DO
 | |
| 		INC(i);
 | |
| 	END;
 | |
| 	IF (i # 0) THEN 
 | |
| 	    WITH precomp[i] DO
 | |
| 		x := arctan + longarctan(OneOverXn-OneOverXnSquarePlusone/(OneOverXn+x));
 | |
| 	    END
 | |
| 	ELSE
 | |
| 		xsqr := x * x;
 | |
| 		x := x *  ((((p4*xsqr+p3)*xsqr+p2)*xsqr+p1)*xsqr+p0) /
 | |
| 			(((((q5*xsqr+q4)*xsqr+q3)*xsqr+q2)*xsqr+q1)*xsqr+q0);
 | |
| 	END;
 | |
| 	IF neg THEN RETURN -x; END;
 | |
| 	RETURN x;
 | |
|   END longarctan;
 | |
| 
 | |
|   (* hyperbolic functions *)
 | |
| 
 | |
|   PROCEDURE sinh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsinh(LONG(x)));
 | |
|   END sinh;
 | |
| 
 | |
|   PROCEDURE longsinh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx - 1.0D/expx)/2.0D;
 | |
|   END longsinh;
 | |
| 
 | |
|   PROCEDURE cosh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longcosh(LONG(x)));
 | |
|   END cosh;
 | |
| 
 | |
|   PROCEDURE longcosh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx + 1.0D/expx)/2.0D;
 | |
|   END longcosh;
 | |
| 
 | |
|   PROCEDURE tanh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longtanh(LONG(x)));
 | |
|   END tanh;
 | |
| 
 | |
|   PROCEDURE longtanh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
 | |
|   END longtanh;
 | |
| 
 | |
|   PROCEDURE arcsinh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarcsinh(LONG(x)));
 | |
|   END arcsinh;
 | |
| 
 | |
|   PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
 | |
|     VAR neg: BOOLEAN;
 | |
|   BEGIN
 | |
| 	neg := FALSE;
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := TRUE;
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	x := longln(x + longsqrt(x*x+1.0D));
 | |
| 	IF neg THEN RETURN -x; END;
 | |
| 	RETURN x;
 | |
|   END longarcsinh;
 | |
| 
 | |
|   PROCEDURE arccosh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarccosh(LONG(x)));
 | |
|   END arccosh;
 | |
| 
 | |
|   PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF x < 1.0D THEN
 | |
| 		Message("arccosh: argument < 1");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	RETURN longln(x + longsqrt(x*x - 1.0D));
 | |
|   END longarccosh;
 | |
| 
 | |
|   PROCEDURE arctanh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarctanh(LONG(x)));
 | |
|   END arctanh;
 | |
| 
 | |
|   PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF (x <= -1.0D) OR (x >= 1.0D) THEN
 | |
| 		Message("arctanh: ABS(argument) >= 1");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
 | |
|   END longarctanh;
 | |
| 
 | |
|   (* conversions *)
 | |
| 
 | |
|   PROCEDURE RadianToDegree(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longRadianToDegree(LONG(x)));
 | |
|   END RadianToDegree;
 | |
| 
 | |
|   PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN x * OneRadianInDegrees;
 | |
|   END longRadianToDegree;
 | |
| 
 | |
|   PROCEDURE DegreeToRadian(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longDegreeToRadian(LONG(x)));
 | |
|   END DegreeToRadian;
 | |
| 
 | |
|   PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN x * OneDegreeInRadians;
 | |
|   END longDegreeToRadian;
 | |
| 
 | |
| BEGIN
 | |
| 	arctaninit := FALSE;
 | |
| END Mathlib.
 |