ack/util/ego/ra/ra_interv.c
George Koehler 17bc9cdef7 More void, fewer clang warnings in util/ego
Most warnings are for functions implicitly returning int.  Change most
of these functions to return void.  (Traditional K&R C had no void
type, but C89 has it.)

Add prototypes to most function declarations in headers.  This is
easy, because ego declares most of its extern functions, and the
comments listed most parameters.  There were a few outdated or missing
declarations, and a few .c files that failed to include an .h with the
declarations.

Add prototypes to a few function definitions in .c files.  Most
functions still have traditional K&R definitions.  Most STATIC
functions still don't have prototypes, because they have no earlier
declaration where I would have added the prototype.

Change some prototypes in util/ego/share/alloc.h.  Functions newmap()
and oldmap() handle an array of pointers to something; change the
array's type from `short **` to `void **`.  Callers use casts to go
between `void **` and the correct type, like `line_p *`.  Function
oldtable() takes a `short *`, not a `short **`; I added the wrong type
in 5bbbaf4.

Make a few other changes to silence warnings.  There are a few places
where clang wants extra parentheses in the code.

Edit util/ego/ra/build.lua to add the missing dependency on ra*.h; I
needed this to prevent crashes from ra.
2019-11-01 15:27:16 -04:00

229 lines
4.4 KiB
C

/* $Id$ */
/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* R E G I S T E R A L L O C A T I O N
*
* R A _ I N T E R V A L . C
*/
#include <stdlib.h>
#include <em_reg.h>
#include "../share/types.h"
#include "../share/debug.h"
#include "../share/global.h"
#include "../share/alloc.h"
#include "../share/lset.h"
#include "ra.h"
#include "ra_interv.h"
interv_p cons_interval(short t_start, short t_stop)
{
interv_p x;
x = newinterval();
x->i_start = t_start;
x->i_stop = t_stop;
return x;
}
void add_interval(short t1, short t2, interv_p *list)
{
/* Add interval (t1,t2) to the list of intervals (which is
* an in-out parameter!). The list is sorted in 'chronological'
* order. We attempt to keep the list as small as possible, by
* putting adjacent intervals in one interval.
*/
register interv_p x1, x2, *q;
int adjacent = 0;
interv_p x;
q = list;
x1 = (interv_p) 0;
for (x2 = *list; x2 != (interv_p) 0; x2 = x2->i_next) {
if (t2 < x2->i_start) break;
x1 = x2;
q = &x2->i_next;
}
/* Now interval (t1,t2) should be inserted somewhere in between
* x1 and x2.
*/
if (x1 != (interv_p) 0 && t1 == x1->i_stop + 1) {
/* join x1 and (t1,t2) */
x1->i_stop = t2;
adjacent++;
}
if (x2 != (interv_p) 0 && t2 + 1 == x2->i_start) {
/* join (t1,t2) and x2 */
x2->i_start = t1;
adjacent++;
}
if (adjacent == 0) {
/* no adjacents, allocate a new intervalfor (t1,t2) */
x = cons_interval(t1,t2);
x->i_next = x2;
*q = x;
} else {
if (adjacent == 2) {
/* x1, (t1,t2) and x2 can be put in one interval */
x1->i_stop = x2->i_stop;
x1->i_next = x2->i_next;
oldinterval(x2);
}
}
}
interv_p loop_lifetime(lp)
loop_p lp;
{
/* Determine the timespan of the loop, expressed as a list
* of intervals.
*/
interv_p lt = 0;
register bblock_p b;
register Lindex bi;
for (bi = Lfirst(lp->LP_BLOCKS); bi != (Lindex) 0;
bi = Lnext(bi,lp->LP_BLOCKS)) {
b = (bblock_p) Lelem(bi);
add_interval(b->B_BEGIN,b->B_END,&lt);
}
return lt;
}
interv_p proc_lifetime(p)
proc_p p;
{
/* Determine the lifetime of an entire procedure */
register bblock_p b;
for (b = p->p_start; b->b_next != (bblock_p) 0; b = b->b_next) ;
return cons_interval(0,b->B_END);
}
STATIC void set_min_max(iv1,iv2)
interv_p *iv1,*iv2;
{
/* Auxiliary routine of intersect */
interv_p i1 = *iv1, i2 = *iv2;
if (i1->i_start < i2->i_start) {
*iv1 = i1;
*iv2 = i2;
} else {
*iv1 = i2;
*iv2 = i1;
}
}
interv_p intersect(list1,list2)
interv_p list1,list2;
{
/* Intersect two lifetimes, each denoted by a list of intervals.
* We maintain two pointers, pmin and pmax, pointing to the
* next interval of each list. At any time, pmin points to the
* interval of which i_start is lowest; pmax points to the
* other interval (i.e. the next interval of the other list).
*/
interv_p lt = 0;
interv_p pmin,pmax;
#define BUMP(p) p = p->i_next
#define EMIT(t1,t2) add_interval(t1,t2,&lt)
pmin = list1;
pmax = list2;
while (pmin != (interv_p) 0 && pmax != (interv_p) 0) {
set_min_max(&pmin,&pmax);
if (pmax->i_start > pmin->i_stop) {
/* e.g. (5,7) and (9,13) */
BUMP(pmin);
} else {
if (pmax->i_stop < pmin->i_stop) {
/* e.g. (5,12) and (7,10) */
EMIT(pmax->i_start,pmax->i_stop);
BUMP(pmax);
} else {
/* e.g. (5,8) and (7,12) */
EMIT(pmax->i_start,pmin->i_stop);
if (pmax->i_stop == pmin->i_stop) {
/* e.g. (5,12) and (7,12) */
BUMP(pmax);
}
BUMP(pmin);
}
}
}
return lt;
}
bool not_disjoint(list1,list2)
interv_p list1,list2;
{
/* See if list1 and list2 do overlap somewhere */
interv_p pmin,pmax;
pmin = list1;
pmax = list2;
while (pmin != (interv_p) 0 && pmax != (interv_p) 0) {
set_min_max(&pmin,&pmax);
if (pmax->i_start > pmin->i_stop) {
/* e.g. (5,7) and (9,13) */
BUMP(pmin);
} else {
return TRUE; /* not disjoint */
}
}
return FALSE; /* disjoint */
}
bool contains(short t, interv_p timespan)
{
register interv_p iv;
for (iv = timespan; iv != (interv_p) 0; iv = iv->i_next) {
if (t <= iv->i_stop) return (t >= iv->i_start);
}
return FALSE;
}
interv_p copy_timespan(list)
interv_p list;
{
/* copy the time span */
interv_p x,y,head,*p;
head = (interv_p) 0;
p = &head;
for (x = list; x != (interv_p) 0; x = x->i_next) {
y = cons_interval(x->i_start,x->i_stop);
*p = y;
p = &y->i_next;
}
return head;
}