ack/lang/cem/libcc/math/j1.c
1988-07-22 16:53:29 +00:00

207 lines
5 KiB
C

/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <math.h>
#include <errno.h>
static double
P1(x)
double x;
{
/* P1(x) = P(z*z)/Q(z*z) where z = 8/x, with x >= 8 */
/* Hart & Cheney # 6755 */
static double p[9] = {
0.1000000000000000000000000489e+01,
0.5581663300347182292169450071e+01,
0.1100186625131173123750501118e+02,
0.9727139359130463694593683431e+01,
0.4060011483142278994462590992e+01,
0.7742832212665311906917358099e+00,
0.6021617752811098752098248630e-01,
0.1482350677236405118074646993e-02,
0.6094215148131061431667573909e-05
};
static double q[9] = {
0.9999999999999999999999999999e+00,
0.5579832245659682292169922224e+01,
0.1099168447731617288972771040e+02,
0.9707206835125961446797916892e+01,
0.4042610016540342097334497865e+01,
0.7671965204303836019508430169e+00,
0.5893258668794493100786371406e-01,
0.1393993644981256852404222530e-02,
0.4585597769784750669754696825e-05
};
double zsq = 64.0/(x*x);
return POLYNOM8(zsq, p) / POLYNOM8(zsq, q);
}
static double
Q1(x)
double x;
{
/* Q1(x) = z*P(z*z)/Q(z*z) where z = 8/x, x >= 8 */
/* Hart & Cheney # 7157 */
/* Probably typerror in Hart & Cheney; it sais:
Q1(x) = x*P(z*z)/Q(z*z)
*/
static double p[9] = {
0.4687499999999999999999995275e-01,
0.3302394516691663879252493748e+00,
0.8456888491208195767613862428e+00,
0.1008551084218946085420665147e+01,
0.5973407972399900690521296181e+00,
0.1737697433393258207540273097e+00,
0.2303862814819568573893610740e-01,
0.1171224207976250587945594946e-02,
0.1486418220337492918307904804e-04
};
static double q[10] = {
0.9999999999999999999999999999e+00,
0.7049380763213049609070823421e+01,
0.1807129960468949760845562209e+02,
0.2159171174362827330505421695e+02,
0.1283239297740546866114600499e+02,
0.3758349275324260869598403931e+01,
0.5055985453754739528620657666e+00,
0.2665604326323907148063400439e-01,
0.3821140353404633025596424652e-03,
0.3206696590241261037875154062e-06
};
double zsq = 64.0/(x*x);
return (8.0/x) * POLYNOM8(zsq, p) / POLYNOM9(zsq, q);
}
static double
smallj1(x)
double x;
{
/* J1(x) = x*P(x*x)/Q(x*x) for x in [0,8] */
/* Hart & Cheney # 6054 */
static double p[10] = {
0.1921176307760798128049021316e+25,
-0.2226092031387396254771375773e+24,
0.7894463902082476734673226741e+22,
-0.1269424373753606065436561036e+21,
0.1092152214043184787101134641e+19,
-0.5454629264396819144157448868e+16,
0.1634659487571284628830445048e+14,
-0.2909662785381647825756152444e+11,
0.2853433451054763915026471449e+08,
-0.1197705712815379389149134705e+05
};
static double q[10] = {
0.3842352615521596256098041912e+25,
0.3507567066272028105798868716e+23,
0.1611334311633414344007062889e+21,
0.4929612313959850319632645381e+18,
0.1117536965288162684489793105e+16,
0.1969278625584719037168592923e+13,
0.2735606122949877990248154504e+10,
0.2940957355049651347475558106e+07,
0.2274736606126590905134610965e+04,
0.1000000000000000000000000000e+01
};
double xsq = x*x;
return x * POLYNOM9(xsq, p) / POLYNOM9(xsq, q);
}
double
j1(x)
double x;
{
/* Use J1(x) = sqrt(2/(pi*x))*(P1(x)*cos(X1)-Q1(x)*sin(X1))
where X1 = x - 3*pi/4 for |x| > 8.
Use J1(-x) = -J1(x).
Use direct approximation of smallj1 for |x| <= 8.
*/
extern double sqrt(), sin(), cos();
int negative = x < 0.0;
if (negative) x = -x;
if (x > 8.0) {
double X1 = x - (M_PI - M_PI_4);
x = sqrt(M_2_PI/x)*(P1(x)*cos(X1) - Q1(x)*sin(X1));
}
else x = smallj1(x);
if (negative) return -x;
return x;
}
static double
smally1_bar(x)
double x;
{
/* Y1(x) = Y1BAR(x)+(2/pi)*(J1(x)ln(x) - 1/x)
Approximation of Y1BAR for 0 <= x <= 8:
Y1BAR(x) = x*P(x*x)/Q(x*x)
Hart & Cheney # 6449
*/
static double p[10] = {
-0.5862655424363443992938931700e+24,
0.1570668341992328458208364904e+24,
-0.7351681299005467428400402479e+22,
0.1390658785759080111485190942e+21,
-0.1339544201526785345938109179e+19,
0.7290257386242270629526344379e+16,
-0.2340575603057015935501295099e+14,
0.4411516199185230690878878903e+11,
-0.4542128738770213026987060358e+08,
0.1988612563465350530472715888e+05
};
static double q[10] = {
0.2990279721605116022908679994e+25,
0.2780285010357803058127175655e+23,
0.1302687474507355553192845146e+21,
0.4071330372239164349602952937e+18,
0.9446611865086570116528399283e+15,
0.1707657951197456205887347694e+13,
0.2440358986882941823431612517e+10,
0.2708852767034077697963790196e+07,
0.2174361138333330803617969305e+04,
0.1000000000000000000000000000e+01
};
double xsq = x*x;
return x * POLYNOM9(xsq, p) / POLYNOM9(xsq, q);
}
double
y1(x)
double x;
{
extern double sqrt(), sin(), cos(), log();
if (x <= 0.0) {
errno = EDOM;
return -HUGE;
}
if (x > 8.0) {
double X1 = x - (M_PI - M_PI_4);
return sqrt(M_2_PI/x) * (P1(x)*sin(X1)+Q1(x)*cos(X1));
}
return smally1_bar(x) + M_2_PI*(j1(x)*log(x) - 1/x);
}