115 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			115 lines
		
	
	
	
		
			2.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|  * See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
|  *
 | |
|  * Author: Ceriel J.H. Jacobs
 | |
|  */
 | |
| 
 | |
| /* $Header$ */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| extern int errno;
 | |
| 
 | |
| static double
 | |
| sinus(x, quadrant)
 | |
| 	double x;
 | |
| {
 | |
| 	/*	sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
 | |
| 	/*	Hart & Cheney # 3374 */
 | |
| 
 | |
| 	static double p[6] = {
 | |
| 		 0.4857791909822798473837058825e+10,
 | |
| 		-0.1808816670894030772075877725e+10,
 | |
| 		 0.1724314784722489597789244188e+09,
 | |
| 		-0.6351331748520454245913645971e+07,
 | |
| 		 0.1002087631419532326179108883e+06,
 | |
| 		-0.5830988897678192576148973679e+03
 | |
| 	};
 | |
| 
 | |
| 	static double q[6] = {
 | |
| 		 0.3092566379840468199410228418e+10,
 | |
| 		 0.1202384907680254190870913060e+09,
 | |
| 		 0.2321427631602460953669856368e+07,
 | |
| 		 0.2848331644063908832127222835e+05,
 | |
| 		 0.2287602116741682420054505174e+03,
 | |
| 		 0.1000000000000000000000000000e+01
 | |
| 	};
 | |
| 
 | |
| 	double xsqr;
 | |
| 	int t;
 | |
| 
 | |
| 	if (x < 0) {
 | |
| 		quadrant += 2;
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	if (M_PI_2 - x == M_PI_2) {
 | |
| 		switch(quadrant) {
 | |
| 		case 0:
 | |
| 		case 2:
 | |
| 			return 0.0;
 | |
| 		case 1:
 | |
| 			return 1.0;
 | |
| 		case 3:
 | |
| 			return -1.0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (x >= M_2PI) {
 | |
| 	    if (x <= 0x7fffffff) {
 | |
| 		/*	Use extended precision to calculate reduced argument.
 | |
| 			Split 2pi in 2 parts a1 and a2, of which the first only
 | |
| 			uses some bits of the mantissa, so that n * a1 is
 | |
| 			exactly representable, where n is the integer part of
 | |
| 			x/pi.
 | |
| 			Here we used 12 bits of the mantissa for a1.
 | |
| 			Also split x in integer part x1 and fraction part x2.
 | |
| 			We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
 | |
| 		*/
 | |
| #define A1 6.2822265625
 | |
| #define A2 0.00095874467958647692528676655900576
 | |
| 		double n = (long) (x / M_2PI);
 | |
| 		double x1 = (long) x;
 | |
| 		double x2 = x - x1;
 | |
| 		x = x1 - n * A1;
 | |
| 		x += x2;
 | |
| 		x -= n * A2;
 | |
| #undef A1
 | |
| #undef A2
 | |
| 	    }
 | |
| 	    else {
 | |
| 		extern double modf();
 | |
| 		double dummy;
 | |
| 
 | |
| 		x = modf(x/M_2PI, &dummy) * M_2PI;
 | |
| 	    }
 | |
| 	}
 | |
| 	x /= M_PI_2;
 | |
| 	t = x;
 | |
| 	x -= t;
 | |
| 	quadrant = (quadrant + (int)(t % 4)) % 4;
 | |
| 	if (quadrant & 01) {
 | |
| 		x = 1 - x;
 | |
| 	}
 | |
| 	if (quadrant > 1) {
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	xsqr = x * x;
 | |
| 	x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
 | |
| 	return x;
 | |
| }
 | |
| 
 | |
| double
 | |
| sin(x)
 | |
| 	double x;
 | |
| {
 | |
| 	return sinus(x, 0);
 | |
| }
 | |
| 
 | |
| double
 | |
| cos(x)
 | |
| 	double x;
 | |
| {
 | |
| 	if (x < 0) x = -x;
 | |
| 	return sinus(x, 1);
 | |
| }
 |