1075 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1075 lines
		
	
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* dfa - DFA construction routines */
 | 
						|
 | 
						|
/*-
 | 
						|
 * Copyright (c) 1990 The Regents of the University of California.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * This code is derived from software contributed to Berkeley by
 | 
						|
 * Vern Paxson.
 | 
						|
 * 
 | 
						|
 * The United States Government has rights in this work pursuant
 | 
						|
 * to contract no. DE-AC03-76SF00098 between the United States
 | 
						|
 * Department of Energy and the University of California.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms are permitted provided
 | 
						|
 * that: (1) source distributions retain this entire copyright notice and
 | 
						|
 * comment, and (2) distributions including binaries display the following
 | 
						|
 * acknowledgement:  ``This product includes software developed by the
 | 
						|
 * University of California, Berkeley and its contributors'' in the
 | 
						|
 * documentation or other materials provided with the distribution and in
 | 
						|
 * all advertising materials mentioning features or use of this software.
 | 
						|
 * Neither the name of the University nor the names of its contributors may
 | 
						|
 * be used to endorse or promote products derived from this software without
 | 
						|
 * specific prior written permission.
 | 
						|
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
 | 
						|
 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
 | 
						|
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef lint
 | 
						|
static char rcsid[] =
 | 
						|
    "@(#) $Header$ (LBL)";
 | 
						|
#endif
 | 
						|
 | 
						|
#include "flexdef.h"
 | 
						|
 | 
						|
 | 
						|
/* declare functions that have forward references */
 | 
						|
 | 
						|
void dump_associated_rules PROTO((FILE*, int));
 | 
						|
void dump_transitions PROTO((FILE*, int[]));
 | 
						|
void sympartition PROTO((int[], int, int[], int[]));
 | 
						|
int symfollowset PROTO((int[], int, int, int[]));
 | 
						|
 | 
						|
 | 
						|
/* check_for_backtracking - check a DFA state for backtracking
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *     int ds, state[numecs];
 | 
						|
 *     check_for_backtracking( ds, state );
 | 
						|
 *
 | 
						|
 * ds is the number of the state to check and state[] is its out-transitions,
 | 
						|
 * indexed by equivalence class, and state_rules[] is the set of rules
 | 
						|
 * associated with this state
 | 
						|
 */
 | 
						|
 | 
						|
void check_for_backtracking( ds, state )
 | 
						|
int ds;
 | 
						|
int state[];
 | 
						|
 | 
						|
    {
 | 
						|
    if ( (reject && ! dfaacc[ds].dfaacc_set) || ! dfaacc[ds].dfaacc_state )
 | 
						|
	{ /* state is non-accepting */
 | 
						|
	++num_backtracking;
 | 
						|
 | 
						|
	if ( backtrack_report )
 | 
						|
	    {
 | 
						|
	    fprintf( backtrack_file, "State #%d is non-accepting -\n", ds );
 | 
						|
 | 
						|
	    /* identify the state */
 | 
						|
	    dump_associated_rules( backtrack_file, ds );
 | 
						|
 | 
						|
	    /* now identify it further using the out- and jam-transitions */
 | 
						|
	    dump_transitions( backtrack_file, state );
 | 
						|
 | 
						|
	    putc( '\n', backtrack_file );
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* check_trailing_context - check to see if NFA state set constitutes
 | 
						|
 *                          "dangerous" trailing context
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    int nfa_states[num_states+1], num_states;
 | 
						|
 *    int accset[nacc+1], nacc;
 | 
						|
 *    check_trailing_context( nfa_states, num_states, accset, nacc );
 | 
						|
 *
 | 
						|
 * NOTES
 | 
						|
 *    Trailing context is "dangerous" if both the head and the trailing
 | 
						|
 *  part are of variable size \and/ there's a DFA state which contains
 | 
						|
 *  both an accepting state for the head part of the rule and NFA states
 | 
						|
 *  which occur after the beginning of the trailing context.
 | 
						|
 *  When such a rule is matched, it's impossible to tell if having been
 | 
						|
 *  in the DFA state indicates the beginning of the trailing context
 | 
						|
 *  or further-along scanning of the pattern.  In these cases, a warning
 | 
						|
 *  message is issued.
 | 
						|
 *
 | 
						|
 *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
 | 
						|
 *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
 | 
						|
 */
 | 
						|
 | 
						|
void check_trailing_context( nfa_states, num_states, accset, nacc )
 | 
						|
int *nfa_states, num_states;
 | 
						|
int *accset;
 | 
						|
register int nacc;
 | 
						|
 | 
						|
    {
 | 
						|
    register int i, j;
 | 
						|
 | 
						|
    for ( i = 1; i <= num_states; ++i )
 | 
						|
	{
 | 
						|
	int ns = nfa_states[i];
 | 
						|
	register int type = state_type[ns];
 | 
						|
	register int ar = assoc_rule[ns];
 | 
						|
 | 
						|
	if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
 | 
						|
	    { /* do nothing */
 | 
						|
	    }
 | 
						|
 | 
						|
	else if ( type == STATE_TRAILING_CONTEXT )
 | 
						|
	    {
 | 
						|
	    /* potential trouble.  Scan set of accepting numbers for
 | 
						|
	     * the one marking the end of the "head".  We assume that
 | 
						|
	     * this looping will be fairly cheap since it's rare that
 | 
						|
	     * an accepting number set is large.
 | 
						|
	     */
 | 
						|
	    for ( j = 1; j <= nacc; ++j )
 | 
						|
		if ( accset[j] & YY_TRAILING_HEAD_MASK )
 | 
						|
		    {
 | 
						|
		    fprintf( stderr,
 | 
						|
		     "%s: Dangerous trailing context in rule at line %d\n",
 | 
						|
			     program_name, rule_linenum[ar] );
 | 
						|
		    return;
 | 
						|
		    }
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* dump_associated_rules - list the rules associated with a DFA state
 | 
						|
 *
 | 
						|
 * synopisis
 | 
						|
 *     int ds;
 | 
						|
 *     FILE *file;
 | 
						|
 *     dump_associated_rules( file, ds );
 | 
						|
 *
 | 
						|
 * goes through the set of NFA states associated with the DFA and
 | 
						|
 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
 | 
						|
 * and writes a report to the given file
 | 
						|
 */
 | 
						|
 | 
						|
void dump_associated_rules( file, ds )
 | 
						|
FILE *file;
 | 
						|
int ds;
 | 
						|
 | 
						|
    {
 | 
						|
    register int i, j;
 | 
						|
    register int num_associated_rules = 0;
 | 
						|
    int rule_set[MAX_ASSOC_RULES + 1];
 | 
						|
    int *dset = dss[ds];
 | 
						|
    int size = dfasiz[ds];
 | 
						|
    
 | 
						|
    for ( i = 1; i <= size; ++i )
 | 
						|
	{
 | 
						|
	register rule_num = rule_linenum[assoc_rule[dset[i]]];
 | 
						|
 | 
						|
	for ( j = 1; j <= num_associated_rules; ++j )
 | 
						|
	    if ( rule_num == rule_set[j] )
 | 
						|
		break;
 | 
						|
 | 
						|
	if ( j > num_associated_rules )
 | 
						|
	    { /* new rule */
 | 
						|
	    if ( num_associated_rules < MAX_ASSOC_RULES )
 | 
						|
		rule_set[++num_associated_rules] = rule_num;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
    bubble( rule_set, num_associated_rules );
 | 
						|
 | 
						|
    fprintf( file, " associated rule line numbers:" );
 | 
						|
 | 
						|
    for ( i = 1; i <= num_associated_rules; ++i )
 | 
						|
	{
 | 
						|
	if ( i % 8 == 1 )
 | 
						|
	    putc( '\n', file );
 | 
						|
	
 | 
						|
	fprintf( file, "\t%d", rule_set[i] );
 | 
						|
	}
 | 
						|
    
 | 
						|
    putc( '\n', file );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* dump_transitions - list the transitions associated with a DFA state
 | 
						|
 *
 | 
						|
 * synopisis
 | 
						|
 *     int state[numecs];
 | 
						|
 *     FILE *file;
 | 
						|
 *     dump_transitions( file, state );
 | 
						|
 *
 | 
						|
 * goes through the set of out-transitions and lists them in human-readable
 | 
						|
 * form (i.e., not as equivalence classes); also lists jam transitions
 | 
						|
 * (i.e., all those which are not out-transitions, plus EOF).  The dump
 | 
						|
 * is done to the given file.
 | 
						|
 */
 | 
						|
 | 
						|
void dump_transitions( file, state )
 | 
						|
FILE *file;
 | 
						|
int state[];
 | 
						|
 | 
						|
    {
 | 
						|
    register int i, ec;
 | 
						|
    int out_char_set[CSIZE];
 | 
						|
 | 
						|
    for ( i = 0; i < csize; ++i )
 | 
						|
	{
 | 
						|
	ec = abs( ecgroup[i] );
 | 
						|
	out_char_set[i] = state[ec];
 | 
						|
	}
 | 
						|
    
 | 
						|
    fprintf( file, " out-transitions: " );
 | 
						|
 | 
						|
    list_character_set( file, out_char_set );
 | 
						|
 | 
						|
    /* now invert the members of the set to get the jam transitions */
 | 
						|
    for ( i = 0; i < csize; ++i )
 | 
						|
	out_char_set[i] = ! out_char_set[i];
 | 
						|
 | 
						|
    fprintf( file, "\n jam-transitions: EOF " );
 | 
						|
 | 
						|
    list_character_set( file, out_char_set );
 | 
						|
 | 
						|
    putc( '\n', file );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* epsclosure - construct the epsilon closure of a set of ndfa states
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    int t[current_max_dfa_size], numstates, accset[num_rules + 1], nacc;
 | 
						|
 *    int hashval;
 | 
						|
 *    int *epsclosure();
 | 
						|
 *    t = epsclosure( t, &numstates, accset, &nacc, &hashval );
 | 
						|
 *
 | 
						|
 * NOTES
 | 
						|
 *    the epsilon closure is the set of all states reachable by an arbitrary
 | 
						|
 *  number of epsilon transitions which themselves do not have epsilon
 | 
						|
 *  transitions going out, unioned with the set of states which have non-null
 | 
						|
 *  accepting numbers.  t is an array of size numstates of nfa state numbers.
 | 
						|
 *  Upon return, t holds the epsilon closure and numstates is updated.  accset
 | 
						|
 *  holds a list of the accepting numbers, and the size of accset is given
 | 
						|
 *  by nacc.  t may be subjected to reallocation if it is not large enough
 | 
						|
 *  to hold the epsilon closure.
 | 
						|
 *
 | 
						|
 *    hashval is the hash value for the dfa corresponding to the state set
 | 
						|
 */
 | 
						|
 | 
						|
int *epsclosure( t, ns_addr, accset, nacc_addr, hv_addr )
 | 
						|
int *t, *ns_addr, accset[], *nacc_addr, *hv_addr;
 | 
						|
 | 
						|
    {
 | 
						|
    register int stkpos, ns, tsp;
 | 
						|
    int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
 | 
						|
    int stkend, nstate;
 | 
						|
    static int did_stk_init = false, *stk; 
 | 
						|
 | 
						|
#define MARK_STATE(state) \
 | 
						|
	trans1[state] = trans1[state] - MARKER_DIFFERENCE;
 | 
						|
 | 
						|
#define IS_MARKED(state) (trans1[state] < 0)
 | 
						|
 | 
						|
#define UNMARK_STATE(state) \
 | 
						|
	trans1[state] = trans1[state] + MARKER_DIFFERENCE;
 | 
						|
 | 
						|
#define CHECK_ACCEPT(state) \
 | 
						|
	{ \
 | 
						|
	nfaccnum = accptnum[state]; \
 | 
						|
	if ( nfaccnum != NIL ) \
 | 
						|
	    accset[++nacc] = nfaccnum; \
 | 
						|
	}
 | 
						|
 | 
						|
#define DO_REALLOCATION \
 | 
						|
	{ \
 | 
						|
	current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
 | 
						|
	++num_reallocs; \
 | 
						|
	t = reallocate_integer_array( t, current_max_dfa_size ); \
 | 
						|
	stk = reallocate_integer_array( stk, current_max_dfa_size ); \
 | 
						|
	} \
 | 
						|
 | 
						|
#define PUT_ON_STACK(state) \
 | 
						|
	{ \
 | 
						|
	if ( ++stkend >= current_max_dfa_size ) \
 | 
						|
	    DO_REALLOCATION \
 | 
						|
	stk[stkend] = state; \
 | 
						|
	MARK_STATE(state) \
 | 
						|
	}
 | 
						|
 | 
						|
#define ADD_STATE(state) \
 | 
						|
	{ \
 | 
						|
	if ( ++numstates >= current_max_dfa_size ) \
 | 
						|
	    DO_REALLOCATION \
 | 
						|
	t[numstates] = state; \
 | 
						|
	hashval = hashval + state; \
 | 
						|
	}
 | 
						|
 | 
						|
#define STACK_STATE(state) \
 | 
						|
	{ \
 | 
						|
	PUT_ON_STACK(state) \
 | 
						|
	CHECK_ACCEPT(state) \
 | 
						|
	if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
 | 
						|
	    ADD_STATE(state) \
 | 
						|
	}
 | 
						|
 | 
						|
    if ( ! did_stk_init )
 | 
						|
	{
 | 
						|
	stk = allocate_integer_array( current_max_dfa_size );
 | 
						|
	did_stk_init = true;
 | 
						|
	}
 | 
						|
 | 
						|
    nacc = stkend = hashval = 0;
 | 
						|
 | 
						|
    for ( nstate = 1; nstate <= numstates; ++nstate )
 | 
						|
	{
 | 
						|
	ns = t[nstate];
 | 
						|
 | 
						|
	/* the state could be marked if we've already pushed it onto
 | 
						|
	 * the stack
 | 
						|
	 */
 | 
						|
	if ( ! IS_MARKED(ns) )
 | 
						|
	    PUT_ON_STACK(ns)
 | 
						|
 | 
						|
	CHECK_ACCEPT(ns)
 | 
						|
	hashval = hashval + ns;
 | 
						|
	}
 | 
						|
 | 
						|
    for ( stkpos = 1; stkpos <= stkend; ++stkpos )
 | 
						|
	{
 | 
						|
	ns = stk[stkpos];
 | 
						|
	transsym = transchar[ns];
 | 
						|
 | 
						|
	if ( transsym == SYM_EPSILON )
 | 
						|
	    {
 | 
						|
	    tsp = trans1[ns] + MARKER_DIFFERENCE;
 | 
						|
 | 
						|
	    if ( tsp != NO_TRANSITION )
 | 
						|
		{
 | 
						|
		if ( ! IS_MARKED(tsp) )
 | 
						|
		    STACK_STATE(tsp)
 | 
						|
 | 
						|
		tsp = trans2[ns];
 | 
						|
 | 
						|
		if ( tsp != NO_TRANSITION )
 | 
						|
		    if ( ! IS_MARKED(tsp) )
 | 
						|
			STACK_STATE(tsp)
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
    /* clear out "visit" markers */
 | 
						|
 | 
						|
    for ( stkpos = 1; stkpos <= stkend; ++stkpos )
 | 
						|
	{
 | 
						|
	if ( IS_MARKED(stk[stkpos]) )
 | 
						|
	    {
 | 
						|
	    UNMARK_STATE(stk[stkpos])
 | 
						|
	    }
 | 
						|
	else
 | 
						|
	    flexfatal( "consistency check failed in epsclosure()" );
 | 
						|
	}
 | 
						|
 | 
						|
    *ns_addr = numstates;
 | 
						|
    *hv_addr = hashval;
 | 
						|
    *nacc_addr = nacc;
 | 
						|
 | 
						|
    return ( t );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* increase_max_dfas - increase the maximum number of DFAs */
 | 
						|
 | 
						|
void increase_max_dfas()
 | 
						|
 | 
						|
    {
 | 
						|
    current_max_dfas += MAX_DFAS_INCREMENT;
 | 
						|
 | 
						|
    ++num_reallocs;
 | 
						|
 | 
						|
    base = reallocate_integer_array( base, current_max_dfas );
 | 
						|
    def = reallocate_integer_array( def, current_max_dfas );
 | 
						|
    dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
 | 
						|
    accsiz = reallocate_integer_array( accsiz, current_max_dfas );
 | 
						|
    dhash = reallocate_integer_array( dhash, current_max_dfas );
 | 
						|
    dss = reallocate_int_ptr_array( dss, current_max_dfas );
 | 
						|
    dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
 | 
						|
 | 
						|
    if ( nultrans )
 | 
						|
	nultrans = reallocate_integer_array( nultrans, current_max_dfas );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* ntod - convert an ndfa to a dfa
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    ntod();
 | 
						|
 *
 | 
						|
 *  creates the dfa corresponding to the ndfa we've constructed.  the
 | 
						|
 *  dfa starts out in state #1.
 | 
						|
 */
 | 
						|
 | 
						|
void ntod()
 | 
						|
 | 
						|
    {
 | 
						|
    int *accset, ds, nacc, newds;
 | 
						|
    int sym, hashval, numstates, dsize;
 | 
						|
    int num_full_table_rows;	/* used only for -f */
 | 
						|
    int *nset, *dset;
 | 
						|
    int targptr, totaltrans, i, comstate, comfreq, targ;
 | 
						|
    int *epsclosure(), snstods(), symlist[CSIZE + 1];
 | 
						|
    int num_start_states;
 | 
						|
    int todo_head, todo_next;
 | 
						|
 | 
						|
    /* note that the following are indexed by *equivalence classes*
 | 
						|
     * and not by characters.  Since equivalence classes are indexed
 | 
						|
     * beginning with 1, even if the scanner accepts NUL's, this
 | 
						|
     * means that (since every character is potentially in its own
 | 
						|
     * equivalence class) these arrays must have room for indices
 | 
						|
     * from 1 to CSIZE, so their size must be CSIZE + 1.
 | 
						|
     */
 | 
						|
    int duplist[CSIZE + 1], state[CSIZE + 1];
 | 
						|
    int targfreq[CSIZE + 1], targstate[CSIZE + 1];
 | 
						|
 | 
						|
    /* this is so find_table_space(...) will know where to start looking in
 | 
						|
     * chk/nxt for unused records for space to put in the state
 | 
						|
     */
 | 
						|
    if ( fullspd )
 | 
						|
	firstfree = 0;
 | 
						|
 | 
						|
    accset = allocate_integer_array( num_rules + 1 );
 | 
						|
    nset = allocate_integer_array( current_max_dfa_size );
 | 
						|
 | 
						|
    /* the "todo" queue is represented by the head, which is the DFA
 | 
						|
     * state currently being processed, and the "next", which is the
 | 
						|
     * next DFA state number available (not in use).  We depend on the
 | 
						|
     * fact that snstods() returns DFA's \in increasing order/, and thus
 | 
						|
     * need only know the bounds of the dfas to be processed.
 | 
						|
     */
 | 
						|
    todo_head = todo_next = 0;
 | 
						|
 | 
						|
    for ( i = 0; i <= csize; ++i )
 | 
						|
	{
 | 
						|
	duplist[i] = NIL;
 | 
						|
	symlist[i] = false;
 | 
						|
	}
 | 
						|
 | 
						|
    for ( i = 0; i <= num_rules; ++i )
 | 
						|
	accset[i] = NIL;
 | 
						|
 | 
						|
    if ( trace )
 | 
						|
	{
 | 
						|
	dumpnfa( scset[1] );
 | 
						|
	fputs( "\n\nDFA Dump:\n\n", stderr );
 | 
						|
	}
 | 
						|
 | 
						|
    inittbl();
 | 
						|
 | 
						|
    /* check to see whether we should build a separate table for transitions
 | 
						|
     * on NUL characters.  We don't do this for full-speed (-F) scanners,
 | 
						|
     * since for them we don't have a simple state number lying around with
 | 
						|
     * which to index the table.  We also don't bother doing it for scanners
 | 
						|
     * unless (1) NUL is in its own equivalence class (indicated by a
 | 
						|
     * positive value of ecgroup[NUL]), (2) NUL's equilvalence class is
 | 
						|
     * the last equivalence class, and (3) the number of equivalence classes
 | 
						|
     * is the same as the number of characters.  This latter case comes about
 | 
						|
     * when useecs is false or when its true but every character still
 | 
						|
     * manages to land in its own class (unlikely, but it's cheap to check
 | 
						|
     * for).  If all these things are true then the character code needed
 | 
						|
     * to represent NUL's equivalence class for indexing the tables is
 | 
						|
     * going to take one more bit than the number of characters, and therefore
 | 
						|
     * we won't be assured of being able to fit it into a YY_CHAR variable.
 | 
						|
     * This rules out storing the transitions in a compressed table, since
 | 
						|
     * the code for interpreting them uses a YY_CHAR variable (perhaps it
 | 
						|
     * should just use an integer, though; this is worth pondering ... ###).
 | 
						|
     *
 | 
						|
     * Finally, for full tables, we want the number of entries in the
 | 
						|
     * table to be a power of two so the array references go fast (it
 | 
						|
     * will just take a shift to compute the major index).  If encoding
 | 
						|
     * NUL's transitions in the table will spoil this, we give it its
 | 
						|
     * own table (note that this will be the case if we're not using
 | 
						|
     * equivalence classes).
 | 
						|
     */
 | 
						|
 | 
						|
    /* note that the test for ecgroup[0] == numecs below accomplishes
 | 
						|
     * both (1) and (2) above
 | 
						|
     */
 | 
						|
    if ( ! fullspd && ecgroup[0] == numecs )
 | 
						|
	{ /* NUL is alone in its equivalence class, which is the last one */
 | 
						|
	int use_NUL_table = (numecs == csize);
 | 
						|
 | 
						|
	if ( fulltbl && ! use_NUL_table )
 | 
						|
	    { /* we still may want to use the table if numecs is a power of 2 */
 | 
						|
	    int power_of_two;
 | 
						|
 | 
						|
	    for ( power_of_two = 1; power_of_two <= csize; power_of_two *= 2 )
 | 
						|
		if ( numecs == power_of_two )
 | 
						|
		    {
 | 
						|
		    use_NUL_table = true;
 | 
						|
		    break;
 | 
						|
		    }
 | 
						|
	    }
 | 
						|
 | 
						|
	if ( use_NUL_table )
 | 
						|
	    nultrans = allocate_integer_array( current_max_dfas );
 | 
						|
	    /* from now on, nultrans != nil indicates that we're
 | 
						|
	     * saving null transitions for later, separate encoding
 | 
						|
	     */
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
    if ( fullspd )
 | 
						|
	{
 | 
						|
	for ( i = 0; i <= numecs; ++i )
 | 
						|
	    state[i] = 0;
 | 
						|
	place_state( state, 0, 0 );
 | 
						|
	}
 | 
						|
 | 
						|
    else if ( fulltbl )
 | 
						|
	{
 | 
						|
	if ( nultrans )
 | 
						|
	    /* we won't be including NUL's transitions in the table,
 | 
						|
	     * so build it for entries from 0 .. numecs - 1
 | 
						|
	     */
 | 
						|
	    num_full_table_rows = numecs;
 | 
						|
 | 
						|
	else
 | 
						|
	    /* take into account the fact that we'll be including
 | 
						|
	     * the NUL entries in the transition table.  Build it
 | 
						|
	     * from 0 .. numecs.
 | 
						|
	     */
 | 
						|
	    num_full_table_rows = numecs + 1;
 | 
						|
 | 
						|
	/* declare it "short" because it's a real long-shot that that
 | 
						|
	 * won't be large enough.
 | 
						|
	 */
 | 
						|
	printf( "static short int yy_nxt[][%d] =\n    {\n",
 | 
						|
		/* '}' so vi doesn't get too confused */
 | 
						|
		num_full_table_rows );
 | 
						|
 | 
						|
	/* generate 0 entries for state #0 */
 | 
						|
	for ( i = 0; i < num_full_table_rows; ++i )
 | 
						|
	    mk2data( 0 );
 | 
						|
 | 
						|
	/* force ',' and dataflush() next call to mk2data */
 | 
						|
	datapos = NUMDATAITEMS;
 | 
						|
 | 
						|
	/* force extra blank line next dataflush() */
 | 
						|
	dataline = NUMDATALINES;
 | 
						|
	}
 | 
						|
 | 
						|
    /* create the first states */
 | 
						|
 | 
						|
    num_start_states = lastsc * 2;
 | 
						|
 | 
						|
    for ( i = 1; i <= num_start_states; ++i )
 | 
						|
	{
 | 
						|
	numstates = 1;
 | 
						|
 | 
						|
	/* for each start condition, make one state for the case when
 | 
						|
	 * we're at the beginning of the line (the '%' operator) and
 | 
						|
	 * one for the case when we're not
 | 
						|
	 */
 | 
						|
	if ( i % 2 == 1 )
 | 
						|
	    nset[numstates] = scset[(i / 2) + 1];
 | 
						|
	else
 | 
						|
	    nset[numstates] = mkbranch( scbol[i / 2], scset[i / 2] );
 | 
						|
 | 
						|
	nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
 | 
						|
 | 
						|
	if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
 | 
						|
	    {
 | 
						|
	    numas += nacc;
 | 
						|
	    totnst += numstates;
 | 
						|
	    ++todo_next;
 | 
						|
 | 
						|
	    if ( variable_trailing_context_rules && nacc > 0 )
 | 
						|
		check_trailing_context( nset, numstates, accset, nacc );
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
    if ( ! fullspd )
 | 
						|
	{
 | 
						|
	if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
 | 
						|
	    flexfatal( "could not create unique end-of-buffer state" );
 | 
						|
 | 
						|
	++numas;
 | 
						|
	++num_start_states;
 | 
						|
	++todo_next;
 | 
						|
	}
 | 
						|
 | 
						|
    while ( todo_head < todo_next )
 | 
						|
	{
 | 
						|
	targptr = 0;
 | 
						|
	totaltrans = 0;
 | 
						|
 | 
						|
	for ( i = 1; i <= numecs; ++i )
 | 
						|
	    state[i] = 0;
 | 
						|
 | 
						|
	ds = ++todo_head;
 | 
						|
 | 
						|
	dset = dss[ds];
 | 
						|
	dsize = dfasiz[ds];
 | 
						|
 | 
						|
	if ( trace )
 | 
						|
	    fprintf( stderr, "state # %d:\n", ds );
 | 
						|
 | 
						|
	sympartition( dset, dsize, symlist, duplist );
 | 
						|
 | 
						|
	for ( sym = 1; sym <= numecs; ++sym )
 | 
						|
	    {
 | 
						|
	    if ( symlist[sym] )
 | 
						|
		{
 | 
						|
		symlist[sym] = 0;
 | 
						|
 | 
						|
		if ( duplist[sym] == NIL )
 | 
						|
		    { /* symbol has unique out-transitions */
 | 
						|
		    numstates = symfollowset( dset, dsize, sym, nset );
 | 
						|
		    nset = epsclosure( nset, &numstates, accset,
 | 
						|
				       &nacc, &hashval );
 | 
						|
 | 
						|
		    if ( snstods( nset, numstates, accset,
 | 
						|
				  nacc, hashval, &newds ) )
 | 
						|
			{
 | 
						|
			totnst = totnst + numstates;
 | 
						|
			++todo_next;
 | 
						|
			numas += nacc;
 | 
						|
 | 
						|
			if ( variable_trailing_context_rules && nacc > 0 )
 | 
						|
			    check_trailing_context( nset, numstates,
 | 
						|
				accset, nacc );
 | 
						|
			}
 | 
						|
 | 
						|
		    state[sym] = newds;
 | 
						|
 | 
						|
		    if ( trace )
 | 
						|
			fprintf( stderr, "\t%d\t%d\n", sym, newds );
 | 
						|
 | 
						|
		    targfreq[++targptr] = 1;
 | 
						|
		    targstate[targptr] = newds;
 | 
						|
		    ++numuniq;
 | 
						|
		    }
 | 
						|
 | 
						|
		else
 | 
						|
		    {
 | 
						|
		    /* sym's equivalence class has the same transitions
 | 
						|
		     * as duplist(sym)'s equivalence class
 | 
						|
		     */
 | 
						|
		    targ = state[duplist[sym]];
 | 
						|
		    state[sym] = targ;
 | 
						|
 | 
						|
		    if ( trace )
 | 
						|
			fprintf( stderr, "\t%d\t%d\n", sym, targ );
 | 
						|
 | 
						|
		    /* update frequency count for destination state */
 | 
						|
 | 
						|
		    i = 0;
 | 
						|
		    while ( targstate[++i] != targ )
 | 
						|
			;
 | 
						|
 | 
						|
		    ++targfreq[i];
 | 
						|
		    ++numdup;
 | 
						|
		    }
 | 
						|
 | 
						|
		++totaltrans;
 | 
						|
		duplist[sym] = NIL;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
 | 
						|
	numsnpairs = numsnpairs + totaltrans;
 | 
						|
 | 
						|
	if ( caseins && ! useecs )
 | 
						|
	    {
 | 
						|
	    register int j;
 | 
						|
 | 
						|
	    for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
 | 
						|
		state[i] = state[j];
 | 
						|
	    }
 | 
						|
 | 
						|
	if ( ds > num_start_states )
 | 
						|
	    check_for_backtracking( ds, state );
 | 
						|
 | 
						|
	if ( nultrans )
 | 
						|
	    {
 | 
						|
	    nultrans[ds] = state[NUL_ec];
 | 
						|
	    state[NUL_ec] = 0;	/* remove transition */
 | 
						|
	    }
 | 
						|
 | 
						|
	if ( fulltbl )
 | 
						|
	    {
 | 
						|
	    /* supply array's 0-element */
 | 
						|
	    if ( ds == end_of_buffer_state )
 | 
						|
		mk2data( -end_of_buffer_state );
 | 
						|
	    else
 | 
						|
		mk2data( end_of_buffer_state );
 | 
						|
 | 
						|
	    for ( i = 1; i < num_full_table_rows; ++i )
 | 
						|
		/* jams are marked by negative of state number */
 | 
						|
		mk2data( state[i] ? state[i] : -ds );
 | 
						|
 | 
						|
	    /* force ',' and dataflush() next call to mk2data */
 | 
						|
	    datapos = NUMDATAITEMS;
 | 
						|
 | 
						|
	    /* force extra blank line next dataflush() */
 | 
						|
	    dataline = NUMDATALINES;
 | 
						|
	    }
 | 
						|
 | 
						|
        else if ( fullspd )
 | 
						|
	    place_state( state, ds, totaltrans );
 | 
						|
 | 
						|
	else if ( ds == end_of_buffer_state )
 | 
						|
	    /* special case this state to make sure it does what it's
 | 
						|
	     * supposed to, i.e., jam on end-of-buffer
 | 
						|
	     */
 | 
						|
	    stack1( ds, 0, 0, JAMSTATE );
 | 
						|
 | 
						|
	else /* normal, compressed state */
 | 
						|
	    {
 | 
						|
	    /* determine which destination state is the most common, and
 | 
						|
	     * how many transitions to it there are
 | 
						|
	     */
 | 
						|
 | 
						|
	    comfreq = 0;
 | 
						|
	    comstate = 0;
 | 
						|
 | 
						|
	    for ( i = 1; i <= targptr; ++i )
 | 
						|
		if ( targfreq[i] > comfreq )
 | 
						|
		    {
 | 
						|
		    comfreq = targfreq[i];
 | 
						|
		    comstate = targstate[i];
 | 
						|
		    }
 | 
						|
 | 
						|
	    bldtbl( state, ds, totaltrans, comstate, comfreq );
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
    if ( fulltbl )
 | 
						|
	dataend();
 | 
						|
 | 
						|
    else if ( ! fullspd )
 | 
						|
	{
 | 
						|
	cmptmps();  /* create compressed template entries */
 | 
						|
 | 
						|
	/* create tables for all the states with only one out-transition */
 | 
						|
	while ( onesp > 0 )
 | 
						|
	    {
 | 
						|
	    mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
 | 
						|
		    onedef[onesp] );
 | 
						|
	    --onesp;
 | 
						|
	    }
 | 
						|
 | 
						|
	mkdeftbl();
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* snstods - converts a set of ndfa states into a dfa state
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    int sns[numstates], numstates, newds, accset[num_rules + 1], nacc, hashval;
 | 
						|
 *    int snstods();
 | 
						|
 *    is_new_state = snstods( sns, numstates, accset, nacc, hashval, &newds );
 | 
						|
 *
 | 
						|
 * on return, the dfa state number is in newds.
 | 
						|
 */
 | 
						|
 | 
						|
int snstods( sns, numstates, accset, nacc, hashval, newds_addr )
 | 
						|
int sns[], numstates, accset[], nacc, hashval, *newds_addr;
 | 
						|
 | 
						|
    {
 | 
						|
    int didsort = 0;
 | 
						|
    register int i, j;
 | 
						|
    int newds, *oldsns;
 | 
						|
 | 
						|
    for ( i = 1; i <= lastdfa; ++i )
 | 
						|
	if ( hashval == dhash[i] )
 | 
						|
	    {
 | 
						|
	    if ( numstates == dfasiz[i] )
 | 
						|
		{
 | 
						|
		oldsns = dss[i];
 | 
						|
 | 
						|
		if ( ! didsort )
 | 
						|
		    {
 | 
						|
		    /* we sort the states in sns so we can compare it to
 | 
						|
		     * oldsns quickly.  we use bubble because there probably
 | 
						|
		     * aren't very many states
 | 
						|
		     */
 | 
						|
		    bubble( sns, numstates );
 | 
						|
		    didsort = 1;
 | 
						|
		    }
 | 
						|
 | 
						|
		for ( j = 1; j <= numstates; ++j )
 | 
						|
		    if ( sns[j] != oldsns[j] )
 | 
						|
			break;
 | 
						|
 | 
						|
		if ( j > numstates )
 | 
						|
		    {
 | 
						|
		    ++dfaeql;
 | 
						|
		    *newds_addr = i;
 | 
						|
		    return ( 0 );
 | 
						|
		    }
 | 
						|
 | 
						|
		++hshcol;
 | 
						|
		}
 | 
						|
 | 
						|
	    else
 | 
						|
		++hshsave;
 | 
						|
	    }
 | 
						|
 | 
						|
    /* make a new dfa */
 | 
						|
 | 
						|
    if ( ++lastdfa >= current_max_dfas )
 | 
						|
	increase_max_dfas();
 | 
						|
 | 
						|
    newds = lastdfa;
 | 
						|
 | 
						|
    dss[newds] = (int *) malloc( (unsigned) ((numstates + 1) * sizeof( int )) );
 | 
						|
 | 
						|
    if ( ! dss[newds] )
 | 
						|
	flexfatal( "dynamic memory failure in snstods()" );
 | 
						|
 | 
						|
    /* if we haven't already sorted the states in sns, we do so now, so that
 | 
						|
     * future comparisons with it can be made quickly
 | 
						|
     */
 | 
						|
 | 
						|
    if ( ! didsort )
 | 
						|
	bubble( sns, numstates );
 | 
						|
 | 
						|
    for ( i = 1; i <= numstates; ++i )
 | 
						|
	dss[newds][i] = sns[i];
 | 
						|
 | 
						|
    dfasiz[newds] = numstates;
 | 
						|
    dhash[newds] = hashval;
 | 
						|
 | 
						|
    if ( nacc == 0 )
 | 
						|
	{
 | 
						|
	if ( reject )
 | 
						|
	    dfaacc[newds].dfaacc_set = (int *) 0;
 | 
						|
	else
 | 
						|
	    dfaacc[newds].dfaacc_state = 0;
 | 
						|
 | 
						|
	accsiz[newds] = 0;
 | 
						|
	}
 | 
						|
 | 
						|
    else if ( reject )
 | 
						|
	{
 | 
						|
	/* we sort the accepting set in increasing order so the disambiguating
 | 
						|
	 * rule that the first rule listed is considered match in the event of
 | 
						|
	 * ties will work.  We use a bubble sort since the list is probably
 | 
						|
	 * quite small.
 | 
						|
	 */
 | 
						|
 | 
						|
	bubble( accset, nacc );
 | 
						|
 | 
						|
	dfaacc[newds].dfaacc_set =
 | 
						|
	    (int *) malloc( (unsigned) ((nacc + 1) * sizeof( int )) );
 | 
						|
 | 
						|
	if ( ! dfaacc[newds].dfaacc_set )
 | 
						|
	    flexfatal( "dynamic memory failure in snstods()" );
 | 
						|
 | 
						|
	/* save the accepting set for later */
 | 
						|
	for ( i = 1; i <= nacc; ++i )
 | 
						|
	    dfaacc[newds].dfaacc_set[i] = accset[i];
 | 
						|
 | 
						|
	accsiz[newds] = nacc;
 | 
						|
	}
 | 
						|
 | 
						|
    else
 | 
						|
	{ /* find lowest numbered rule so the disambiguating rule will work */
 | 
						|
	j = num_rules + 1;
 | 
						|
 | 
						|
	for ( i = 1; i <= nacc; ++i )
 | 
						|
	    if ( accset[i] < j )
 | 
						|
		j = accset[i];
 | 
						|
 | 
						|
	dfaacc[newds].dfaacc_state = j;
 | 
						|
	}
 | 
						|
 | 
						|
    *newds_addr = newds;
 | 
						|
 | 
						|
    return ( 1 );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* symfollowset - follow the symbol transitions one step
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    int ds[current_max_dfa_size], dsize, transsym;
 | 
						|
 *    int nset[current_max_dfa_size], numstates;
 | 
						|
 *    numstates = symfollowset( ds, dsize, transsym, nset );
 | 
						|
 */
 | 
						|
 | 
						|
int symfollowset( ds, dsize, transsym, nset )
 | 
						|
int ds[], dsize, transsym, nset[];
 | 
						|
 | 
						|
    {
 | 
						|
    int ns, tsp, sym, i, j, lenccl, ch, numstates;
 | 
						|
    int ccllist;
 | 
						|
 | 
						|
    numstates = 0;
 | 
						|
 | 
						|
    for ( i = 1; i <= dsize; ++i )
 | 
						|
	{ /* for each nfa state ns in the state set of ds */
 | 
						|
	ns = ds[i];
 | 
						|
	sym = transchar[ns];
 | 
						|
	tsp = trans1[ns];
 | 
						|
 | 
						|
	if ( sym < 0 )
 | 
						|
	    { /* it's a character class */
 | 
						|
	    sym = -sym;
 | 
						|
	    ccllist = cclmap[sym];
 | 
						|
	    lenccl = ccllen[sym];
 | 
						|
 | 
						|
	    if ( cclng[sym] )
 | 
						|
		{
 | 
						|
		for ( j = 0; j < lenccl; ++j )
 | 
						|
		    { /* loop through negated character class */
 | 
						|
		    ch = ccltbl[ccllist + j];
 | 
						|
 | 
						|
		    if ( ch == 0 )
 | 
						|
			ch = NUL_ec;
 | 
						|
 | 
						|
		    if ( ch > transsym )
 | 
						|
			break;	/* transsym isn't in negated ccl */
 | 
						|
 | 
						|
		    else if ( ch == transsym )
 | 
						|
			/* next 2 */ goto bottom;
 | 
						|
		    }
 | 
						|
 | 
						|
		/* didn't find transsym in ccl */
 | 
						|
		nset[++numstates] = tsp;
 | 
						|
		}
 | 
						|
 | 
						|
	    else
 | 
						|
		for ( j = 0; j < lenccl; ++j )
 | 
						|
		    {
 | 
						|
		    ch = ccltbl[ccllist + j];
 | 
						|
 | 
						|
		    if ( ch == 0 )
 | 
						|
			ch = NUL_ec;
 | 
						|
 | 
						|
		    if ( ch > transsym )
 | 
						|
			break;
 | 
						|
 | 
						|
		    else if ( ch == transsym )
 | 
						|
			{
 | 
						|
			nset[++numstates] = tsp;
 | 
						|
			break;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
	    }
 | 
						|
 | 
						|
	else if ( sym >= 'A' && sym <= 'Z' && caseins )
 | 
						|
	    flexfatal( "consistency check failed in symfollowset" );
 | 
						|
 | 
						|
	else if ( sym == SYM_EPSILON )
 | 
						|
	    { /* do nothing */
 | 
						|
	    }
 | 
						|
 | 
						|
	else if ( abs( ecgroup[sym] ) == transsym )
 | 
						|
	    nset[++numstates] = tsp;
 | 
						|
 | 
						|
bottom:
 | 
						|
	;
 | 
						|
	}
 | 
						|
 | 
						|
    return ( numstates );
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
/* sympartition - partition characters with same out-transitions
 | 
						|
 *
 | 
						|
 * synopsis
 | 
						|
 *    integer ds[current_max_dfa_size], numstates, duplist[numecs];
 | 
						|
 *    symlist[numecs];
 | 
						|
 *    sympartition( ds, numstates, symlist, duplist );
 | 
						|
 */
 | 
						|
 | 
						|
void sympartition( ds, numstates, symlist, duplist )
 | 
						|
int ds[], numstates, duplist[];
 | 
						|
int symlist[];
 | 
						|
 | 
						|
    {
 | 
						|
    int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
 | 
						|
 | 
						|
    /* partitioning is done by creating equivalence classes for those
 | 
						|
     * characters which have out-transitions from the given state.  Thus
 | 
						|
     * we are really creating equivalence classes of equivalence classes.
 | 
						|
     */
 | 
						|
 | 
						|
    for ( i = 1; i <= numecs; ++i )
 | 
						|
	{ /* initialize equivalence class list */
 | 
						|
	duplist[i] = i - 1;
 | 
						|
	dupfwd[i] = i + 1;
 | 
						|
	}
 | 
						|
 | 
						|
    duplist[1] = NIL;
 | 
						|
    dupfwd[numecs] = NIL;
 | 
						|
 | 
						|
    for ( i = 1; i <= numstates; ++i )
 | 
						|
	{
 | 
						|
	ns = ds[i];
 | 
						|
	tch = transchar[ns];
 | 
						|
 | 
						|
	if ( tch != SYM_EPSILON )
 | 
						|
	    {
 | 
						|
	    if ( tch < -lastccl || tch > csize )
 | 
						|
		{
 | 
						|
		if ( tch > csize && tch <= CSIZE )
 | 
						|
		    flexerror( "scanner requires -8 flag" );
 | 
						|
 | 
						|
		else
 | 
						|
		    flexfatal(
 | 
						|
			"bad transition character detected in sympartition()" );
 | 
						|
		}
 | 
						|
 | 
						|
	    if ( tch >= 0 )
 | 
						|
		{ /* character transition */
 | 
						|
		/* abs() needed for fake %t ec's */
 | 
						|
		int ec = abs( ecgroup[tch] );
 | 
						|
 | 
						|
		mkechar( ec, dupfwd, duplist );
 | 
						|
		symlist[ec] = 1;
 | 
						|
		}
 | 
						|
 | 
						|
	    else
 | 
						|
		{ /* character class */
 | 
						|
		tch = -tch;
 | 
						|
 | 
						|
		lenccl = ccllen[tch];
 | 
						|
		cclp = cclmap[tch];
 | 
						|
		mkeccl( ccltbl + cclp, lenccl, dupfwd, duplist, numecs,
 | 
						|
			NUL_ec );
 | 
						|
 | 
						|
		if ( cclng[tch] )
 | 
						|
		    {
 | 
						|
		    j = 0;
 | 
						|
 | 
						|
		    for ( k = 0; k < lenccl; ++k )
 | 
						|
			{
 | 
						|
			ich = ccltbl[cclp + k];
 | 
						|
 | 
						|
			if ( ich == 0 )
 | 
						|
			    ich = NUL_ec;
 | 
						|
 | 
						|
			for ( ++j; j < ich; ++j )
 | 
						|
			    symlist[j] = 1;
 | 
						|
			}
 | 
						|
 | 
						|
		    for ( ++j; j <= numecs; ++j )
 | 
						|
			symlist[j] = 1;
 | 
						|
		    }
 | 
						|
 | 
						|
		else
 | 
						|
		    for ( k = 0; k < lenccl; ++k )
 | 
						|
			{
 | 
						|
			ich = ccltbl[cclp + k];
 | 
						|
 | 
						|
			if ( ich == 0 )
 | 
						|
			    ich = NUL_ec;
 | 
						|
 | 
						|
			symlist[ich] = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 |