ack/lang/m2/comp/cstoper.c
George Koehler 649410bb27 Always use unsigned long.
Traditional C compilers had long but not unsigned long.  I now assume
that everyone can compile unsigned long.  Remove macro UNSIGNED_ARITH
and act like it is always defined.  The type `unsigned arith` works
because arith is a macro for long.
2017-10-28 17:56:20 -04:00

663 lines
13 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* C O N S T A N T E X P R E S S I O N H A N D L I N G */
/* $Id$ */
#include <stdlib.h>
#include "parameters.h"
#include "debug.h"
#include <em_arith.h>
#include <em_label.h>
#include <assert.h>
#include <alloc.h>
#include "idf.h"
#include "type.h"
#include "LLlex.h"
#include "node.h"
#include "Lpars.h"
#include "standards.h"
#include "warning.h"
extern char *symbol2str();
#define arith_sign ((arith) (1L << (sizeof(arith) * 8 - 1)))
#ifndef NOCROSS
arith full_mask[MAXSIZE+1];/* full_mask[1] == 0xFF, full_mask[2] == 0xFFFF, .. */
arith max_int[MAXSIZE+1]; /* max_int[1] == 0x7F, max_int[2] == 0x7FFF, .. */
arith min_int[MAXSIZE+1]; /* min_int[1] == 0xFFFFFF80, min_int[2] = 0xFFFF8000,
...
*/
unsigned int wrd_bits; /* number of bits in a word */
#else
arith full_mask[] = { 0L, 0xFFL, 0xFFFFL, 0L, 0xFFFFFFFFL };
arith max_int[] = { 0L, 0x7FL, 0x7FFFL, 0L, 0x7FFFFFFFL };
arith min_int[] = { 0L, -128L, -32768L, 0L, -2147483647L-1 };
#endif
extern char options[];
void CutSize();
overflow(expp)
t_node *expp;
{
if (expp->nd_type != address_type) {
node_warning(expp, W_ORDINARY, "overflow in constant expression");
}
}
STATIC
commonbin(expp)
t_node **expp;
{
register t_node *exp = *expp;
t_type *tp = exp->nd_type;
register t_node *right = exp->nd_RIGHT;
exp->nd_RIGHT = 0;
FreeNode(exp);
*expp = right;
right->nd_type = tp;
}
cstunary(expp)
t_node **expp;
{
/* The unary operation in "expp" is performed on the constant
expression below it, and the result restored in expp.
*/
register t_node *exp = *expp;
register t_node *right = exp->nd_RIGHT;
register arith o1 = right->nd_INT;
switch(exp->nd_symb) {
/* Should not get here
case '+':
break;
*/
case '-':
if (! options['s'] &&
o1 == min_int[(int)(right->nd_type->tp_size)]) {
overflow(exp);
}
o1 = -o1;
break;
case NOT:
case '~':
o1 = !o1;
break;
default:
crash("(cstunary)");
}
commonbin(expp);
(*expp)->nd_INT = o1;
CutSize(*expp);
}
STATIC
divide(pdiv, prem)
arith *pdiv, *prem;
{
/* Unsigned divide *pdiv by *prem, and store result in *pdiv,
remainder in *prem
*/
register arith o1 = *pdiv;
register arith o2 = *prem;
*pdiv = (unsigned arith) o1 / (unsigned arith) o2;
*prem = (unsigned arith) o1 % (unsigned arith) o2;
}
void
cstibin(expp)
t_node **expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in expp.
This version is for INTEGER expressions.
*/
register t_node *exp = *expp;
register arith o1 = exp->nd_LEFT->nd_INT;
register arith o2 = exp->nd_RIGHT->nd_INT;
register int sz = exp->nd_type->tp_size;
assert(exp->nd_class == Oper);
assert(exp->nd_LEFT->nd_class == Value);
assert(exp->nd_RIGHT->nd_class == Value);
switch (exp->nd_symb) {
case '*':
if (o1 > 0) {
if (o2 > 0) {
if (max_int[sz] / o1 < o2) overflow(exp);
}
else if (min_int[sz] / o1 > o2) overflow(exp);
}
else if (o1 < 0) {
if (o2 < 0) {
if (o1 == min_int[sz] || o2 == min_int[sz] ||
max_int[sz] / (-o1) < (-o2)) overflow(exp);
}
else if (o2 > 0) {
if (min_int[sz] / o2 > o1) overflow(exp);
}
}
o1 *= o2;
break;
case DIV:
case MOD:
if (o2 == 0) {
node_error(exp, exp->nd_symb == DIV ?
"division by 0" :
"modulo by 0");
return;
}
if ((o1 < 0) != (o2 < 0)) {
if (o1 < 0) o1 = -o1;
else o2 = -o2;
if (exp->nd_symb == DIV) o1 = -((o1+o2-1)/o2);
else o1 = ((o1+o2-1)/o2) * o2 - o1;
}
else {
if (exp->nd_symb == DIV) o1 /= o2;
else o1 %= o2;
}
break;
case '+':
if ( (o1 > 0 && o2 > 0 && max_int[sz] - o1 < o2)
|| (o1 < 0 && o2 < 0 && min_int[sz] - o1 > o2)
) overflow(exp);
o1 += o2;
break;
case '-':
if ( (o1 >= 0 && o2 < 0 && max_int[sz] + o2 < o1)
|| (o1 < 0 && o2 >= 0 && min_int[sz] + o2 > o1)
) overflow(exp);
o1 -= o2;
break;
case '<':
o1 = (o1 < o2);
break;
case '>':
o1 = (o1 > o2);
break;
case LESSEQUAL:
o1 = (o1 <= o2);
break;
case GREATEREQUAL:
o1 = (o1 >= o2);
break;
case '=':
o1 = (o1 == o2);
break;
case '#':
o1 = (o1 != o2);
break;
default:
crash("(cstibin)");
}
commonbin(expp);
(*expp)->nd_INT = o1;
CutSize(*expp);
}
cstfbin(expp)
t_node **expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in expp.
This version is for REAL expressions.
*/
register t_node *exp = *expp;
register struct real *p = exp->nd_LEFT->nd_REAL;
register flt_arith *o1 = &p->r_val;
register flt_arith *o2 = &exp->nd_RIGHT->nd_RVAL;
int compar = 0;
int cmpval = 0;
assert(exp->nd_class == Oper);
assert(exp->nd_LEFT->nd_class == Value);
assert(exp->nd_RIGHT->nd_class == Value);
switch (exp->nd_symb) {
case '*':
flt_mul(o1, o2, o1);
break;
case '/':
flt_div(o1, o2, o1);
break;
case '+':
flt_add(o1, o2, o1);
break;
case '-':
flt_sub(o1, o2, o1);
break;
case '<':
case '>':
case LESSEQUAL:
case GREATEREQUAL:
case '=':
case '#':
compar++;
cmpval = flt_cmp(o1, o2);
switch(exp->nd_symb) {
case '<': cmpval = (cmpval < 0); break;
case '>': cmpval = (cmpval > 0); break;
case LESSEQUAL: cmpval = (cmpval <= 0); break;
case GREATEREQUAL: cmpval = (cmpval >= 0); break;
case '=': cmpval = (cmpval == 0); break;
case '#': cmpval = (cmpval != 0); break;
}
if (exp->nd_RIGHT->nd_RSTR) free(exp->nd_RIGHT->nd_RSTR);
free_real(exp->nd_RIGHT->nd_REAL);
break;
default:
crash("(cstfbin)");
}
switch(flt_status) {
case FLT_OVFL:
node_warning(exp, "floating point overflow on %s",
symbol2str(exp->nd_symb));
break;
case FLT_DIV0:
node_error(exp, "division by 0.0");
break;
}
if (p->r_real) {
free(p->r_real);
p->r_real = 0;
}
if (compar) {
free_real(p);
}
commonbin(expp);
exp = *expp;
if (compar) {
exp->nd_symb = INTEGER;
exp->nd_INT = cmpval;
}
else {
exp->nd_REAL = p;
}
CutSize(exp);
}
void
cstubin(expp)
t_node **expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in
expp.
*/
register t_node *exp = *expp;
arith o1 = exp->nd_LEFT->nd_INT;
arith o2 = exp->nd_RIGHT->nd_INT;
register int sz = exp->nd_type->tp_size;
arith tmp1, tmp2;
assert(exp->nd_class == Oper);
assert(exp->nd_LEFT->nd_class == Value);
assert(exp->nd_RIGHT->nd_class == Value);
switch (exp->nd_symb) {
case '*':
if (o1 == 0 || o2 == 0) {
o1 = 0;
break;
}
tmp1 = full_mask[sz];
tmp2 = o2;
divide(&tmp1, &tmp2);
if (! chk_bounds(o1, tmp1, T_CARDINAL)) overflow(exp);
o1 *= o2;
break;
case DIV:
case MOD:
if (o2 == 0) {
node_error(exp, exp->nd_symb == DIV ?
"division by 0" :
"modulo by 0");
return;
}
divide(&o1, &o2);
if (exp->nd_symb == MOD) o1 = o2;
break;
case '+':
if (! chk_bounds(o2, full_mask[sz] - o1, T_CARDINAL)) {
overflow(exp);
}
o1 += o2;
break;
case '-':
if ( exp->nd_type != address_type
&& !chk_bounds(o2, o1, T_CARDINAL)
&& ( exp->nd_type->tp_fund != T_INTORCARD
|| ( exp->nd_type = int_type
, !chk_bounds(min_int[sz], o1 - o2, T_CARDINAL) ) )
) {
node_warning(exp, W_ORDINARY,
"underflow in constant expression");
}
o1 -= o2;
break;
case '<':
o1 = ! chk_bounds(o2, o1, T_CARDINAL);
break;
case '>':
o1 = ! chk_bounds(o1, o2, T_CARDINAL);
break;
case LESSEQUAL:
o1 = chk_bounds(o1, o2, T_CARDINAL);
break;
case GREATEREQUAL:
o1 = chk_bounds(o2, o1, T_CARDINAL);
break;
case '=':
o1 = (o1 == o2);
break;
case '#':
o1 = (o1 != o2);
break;
case AND:
case '&':
o1 = (o1 && o2);
break;
case OR:
o1 = (o1 || o2);
break;
default:
crash("(cstubin)");
}
commonbin(expp);
exp = *expp;
exp->nd_INT = o1;
if (exp->nd_type == bool_type) exp->nd_symb = INTEGER;
CutSize(exp);
}
void
cstset(expp)
t_node **expp;
{
extern arith *MkSet();
register t_node *exp = *expp;
register arith *set1, *set2, *set3;
register unsigned int setsize;
register int j;
assert(exp->nd_RIGHT->nd_class == Set);
assert(exp->nd_symb == IN || exp->nd_LEFT->nd_class == Set);
set2 = exp->nd_RIGHT->nd_set;
setsize = (unsigned) (exp->nd_RIGHT->nd_type->tp_size) / (unsigned) word_size;
if (exp->nd_symb == IN) {
/* The setsize must fit in an unsigned, as it is
allocated with Malloc, so we can do the arithmetic
in an unsigned too.
*/
unsigned i;
assert(exp->nd_LEFT->nd_class == Value);
exp->nd_LEFT->nd_INT -= exp->nd_RIGHT->nd_type->set_low;
exp = exp->nd_LEFT;
i = exp->nd_INT;
/* Careful here; use exp->nd_LEFT->nd_INT to see if
it falls in the range of the set. Do not use i
for this, as i may be truncated.
*/
i = (exp->nd_INT >= 0 &&
exp->nd_INT < setsize * wrd_bits &&
(set2[i / wrd_bits] & (1 << (i % wrd_bits))));
FreeSet(set2);
exp = getnode(Value);
exp->nd_symb = INTEGER;
exp->nd_lineno = (*expp)->nd_lineno;
exp->nd_INT = i;
exp->nd_type = bool_type;
FreeNode(*expp);
*expp = exp;
return;
}
set1 = exp->nd_LEFT->nd_set;
*expp = getnode(Set);
(*expp)->nd_type = exp->nd_type;
(*expp)->nd_lineno = exp->nd_lineno;
switch(exp->nd_symb) {
case '+': /* Set union */
case '-': /* Set difference */
case '*': /* Set intersection */
case '/': /* Symmetric set difference */
(*expp)->nd_set = set3 = MkSet(exp->nd_type->set_sz);
for (j = 0; j < setsize; j++) {
switch(exp->nd_symb) {
case '+':
*set3++ = *set1++ | *set2++;
break;
case '-':
*set3++ = *set1++ & ~*set2++;
break;
case '*':
*set3++ = *set1++ & *set2++;
break;
case '/':
*set3++ = *set1++ ^ *set2++;
break;
}
}
break;
case GREATEREQUAL:
case LESSEQUAL:
case '=':
case '#':
/* Constant set comparisons
*/
for (j = 0; j < setsize; j++) {
switch(exp->nd_symb) {
case GREATEREQUAL:
if ((*set1 | *set2++) != *set1) break;
set1++;
continue;
case LESSEQUAL:
if ((*set2 | *set1++) != *set2) break;
set2++;
continue;
case '=':
case '#':
if (*set1++ != *set2++) break;
continue;
}
break;
}
if (j < setsize) {
j = exp->nd_symb == '#';
}
else {
j = exp->nd_symb != '#';
}
*expp = getnode(Value);
(*expp)->nd_symb = INTEGER;
(*expp)->nd_INT = j;
(*expp)->nd_type = bool_type;
(*expp)->nd_lineno = (*expp)->nd_lineno;
break;
default:
crash("(cstset)");
}
FreeSet(exp->nd_LEFT->nd_set);
FreeSet(exp->nd_RIGHT->nd_set);
FreeNode(exp);
}
cstcall(expp, call)
t_node **expp;
{
/* a standard procedure call is found that can be evaluated
compile time, so do so.
*/
register t_node *expr;
register t_type *tp;
assert((*expp)->nd_class == Call);
expr = (*expp)->nd_RIGHT->nd_LEFT;
tp = expr->nd_type;
expr->nd_type = (*expp)->nd_type;
(*expp)->nd_RIGHT->nd_LEFT = 0;
FreeNode(*expp);
*expp = expr;
expr->nd_symb = INTEGER;
expr->nd_class = Value;
switch(call) {
case S_ABS:
if (expr->nd_INT < 0) {
if (! options['s'] &&
expr->nd_INT <= min_int[(int)(tp->tp_size)]) {
overflow(expr);
}
expr->nd_INT = - expr->nd_INT;
}
CutSize(expr);
break;
case S_CAP:
if (expr->nd_INT >= 'a' && expr->nd_INT <= 'z') {
expr->nd_INT += ('A' - 'a');
}
break;
case S_HIGH:
case S_MAX:
if (tp->tp_fund == T_INTEGER) {
expr->nd_INT = max_int[(int)(tp->tp_size)];
}
else if (tp->tp_fund == T_CARDINAL) {
expr->nd_INT = full_mask[(int)(tp->tp_size)];
}
else if (tp->tp_fund == T_SUBRANGE) {
expr->nd_INT = tp->sub_ub;
}
else expr->nd_INT = tp->enm_ncst - 1;
break;
case S_MIN:
if (tp->tp_fund == T_INTEGER) {
expr->nd_INT = min_int[(int)(tp->tp_size)];
}
else if (tp->tp_fund == T_SUBRANGE) {
expr->nd_INT = tp->sub_lb;
}
else expr->nd_INT = 0;
break;
case S_ODD:
expr->nd_INT &= 1;
break;
case S_TSIZE:
case S_SIZE:
expr->nd_INT = tp->tp_size;
break;
default:
crash("(cstcall)");
}
}
void
CutSize(expr)
register t_node *expr;
{
/* The constant value of the expression expr is made to
conform to the size of the type of the expression.
*/
register t_type *tp = BaseType(expr->nd_type);
assert(expr->nd_class == Value);
if (tp->tp_fund == T_REAL) return;
if (tp->tp_fund != T_INTEGER) {
expr->nd_INT &= full_mask[(int)(tp->tp_size)];
}
else {
int nbits = (int) (sizeof(arith) - tp->tp_size) * 8;
expr->nd_INT = (expr->nd_INT << nbits) >> nbits;
}
}
InitCst()
{
register int i = 0;
#ifndef NOCROSS
register arith bt = (arith)0;
while (!(bt < 0)) {
i++;
bt = (bt << 8) + 0377;
if (i == MAXSIZE+1)
fatal("array full_mask too small for this machine");
full_mask[i] = bt;
max_int[i] = bt & ~(1L << ((8 * i) - 1));
min_int[i] = - max_int[i];
if (! options['s']) min_int[i]--;
}
if ((int)long_size > sizeof(arith)) {
fatal("sizeof (arith) insufficient on this machine");
}
wrd_bits = 8 * (int) word_size;
#else
if (options['s']) {
for (i = 0; i < sizeof(long); i++) min_int[i] = - max_int[i];
}
#endif
}