ack/lang/cem/libcc/math/tan.c
1989-05-18 16:48:28 +00:00

74 lines
1.4 KiB
C

/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <math.h>
#include <errno.h>
extern int errno;
extern double modf();
double
tan(x)
double x;
{
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
int negative = x < 0;
int invert = 0;
double y;
static double p[] = {
1.0,
-0.13338350006421960681e+0,
0.34248878235890589960e-2,
-0.17861707342254426711e-4
};
static double q[] = {
1.0,
-0.46671683339755294240e+0,
0.25663832289440112864e-1,
-0.31181531907010027307e-3,
0.49819433993786512270e-6
};
if (negative) x = -x;
/* ??? avoid loss of significance, error if x is too large ??? */
y = x * M_2_PI + 0.5;
/* Use extended precision to calculate reduced argument.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
*/
#define A1 1.57080078125
#define A2 -4.454455103380768678308e-6
{
double x1, x2;
modf(y, &y);
if (modf(0.5*y, &x1)) invert = 1;
x2 = modf(x, &x1);
x = x1 - y * A1;
x += x2;
x -= y * A2;
#undef A1
#undef A2
}
/* ??? avoid underflow ??? */
y = x * x;
x += x * y * POLYNOM2(y, p+1);
y = POLYNOM4(y, q);
if (negative) x = -x;
return invert ? -y/x : x/y;
}