ack/lang/cem/cemcom.ansi/ch3.c
George Koehler 15950f9c95 Add long long literals like 123LL to ACK C.
For now, a long long literal must have the 'LL' or 'll' suffix.  A
literal without 'LL' or 'll' acts as before: it may become unsigned
long but not long long.  (For targets where int and long have the same
size, some literals change from unsigned int to unsigned long.)

Type `arith` may be too narrow for long long values.  Add a second
type `writh` for wide arithmetic, and change some variables from arith
to writh.  This may cause bugs if I forget to use writh, or if a
conversion from writh to arith overflows.  I mark some conversions
with (arith) or (writh) casts.

 - BigPars, SmallPars: Remove SPECIAL_ARITHMETICS.  This feature
   would change arith to a different type, but can't work, because it
   would conflict with definitions of arith in both <em_arith.h> and
   <flt_arith.h>.
 - LLlex.c: Understand 'LL' or 'll' suffix.  Cut size of constant when
   it overflows writh, not only when it overflows the target machine's
   types.  (This cut might not be necessary, because we might cut it
   again later.)  When picking signed long or unsigned long, check the
   target's long type, not the compiler's arith type; the old check
   for `val >= 0` was broken where sizeof(arith) > 4.
 - LLlex.h: Change struct token's tok_ival to writh, so it can hold a
   long long literal.
 - arith.c: Adjust to VL_VALUE being writh.  Don't convert between
   float and integer at compile-time if the integer might be too wide
   for <flt_arith.h>.  Add writh2str(), because writh might be too
   wide for long2str().
 - arith.h: Remove SPECIAL_ARITHMETICS.  Declare full_mask[] here,
   not in several *.c files.  Declare writh2str().
 - ch3.c, ch3bin.c, ch3mon.c, declarator.c, statement.g: Remove
   obsolete casts.  Adjust to VL_VALUE being writh.
 - conversion.c, stab.c: Don't declare full_mask[].
 - cstoper.c: Use writh for constant operations on VL_VALUE, and for
   full_mask[].
 - declar., field.c, ival.g: Add casts.
 - dumpidf.c: Need to #include "parameters.h" before checking DEBUG.
   Use writh2str, because "%ld" might not work.
 - eval.c, eval.h: Add casts.  Use writh when writing a wide constant
   in EM.
 - expr.c: Add and remove casts.  In fill_int_expr(), make expression
   from long long literal.  In chk_cst_expr(), allow long long as
   constant expression, so the compiler may accept `case 123LL:` in a
   switch statement.
 - expr.str: Change struct value's vl_value and struct expr's VL_VALUE
   to writh, so an expression may have a long long value at compile
   time.
 - statement.g: Remove obsolete casts.
 - switch.c, switch.str: Use writh in case entries for switch
   statements, so `switch (ll) {...}` with long long ll works.
 - tokenname.c: Add ULNGLNG so LLlex.c can use it for literals.
2019-09-04 22:14:38 -04:00

717 lines
17 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
/* $Id$ */
/* S E M A N T I C A N A L Y S I S -- C H A P T E R 3.3 */
#include <assert.h>
#include "parameters.h"
#include <flt_arith.h>
#include "arith.h"
#include "ch3.h"
#include "idf.h"
#include "proto.h"
#include "type.h"
#include "struct.h"
#include "label.h"
#include "expr.h"
#include "def.h"
#include "Lpars.h"
#include "error.h"
#include "ch3bin.h"
#include "file_info.h"
extern char options[];
extern char *symbol2str();
extern struct type *qualifier_type();
/* Most expression-handling routines have a pointer to a
(struct type *) as first parameter. The object under the pointer
gets updated in the process.
*/
void ch3sel(struct expr **expp, int oper, struct idf *idf)
{
/* The selector idf is applied to *expp; oper may be '.' or
ARROW.
*/
register struct expr *exp;
register struct type *tp;
register struct sdef *sd;
any2opnd(expp, oper);
exp = *expp;
tp = exp->ex_type;
if (oper == ARROW) {
if (tp->tp_fund == POINTER &&
( tp->tp_up->tp_fund == STRUCT ||
tp->tp_up->tp_fund == UNION)) /* normal case */
tp = tp->tp_up;
else { /* constructions like "12->selector" and
"char c; c->selector"
*/
switch (tp->tp_fund) {
case POINTER:
break;
case INT:
case LONG:
case LNGLNG:
/* An error is given in idf2sdef() */
ch3cast(expp, CAST, pa_type);
sd = idf2sdef(idf, tp);
tp = sd->sd_stype;
break;
default:
expr_error(exp, "-> applied to %s",
symbol2str(tp->tp_fund));
case ERRONEOUS:
exp->ex_type = error_type;
return;
}
}
} else { /* oper == '.' */
/* nothing */
}
exp = *expp;
switch (tp->tp_fund) {
case POINTER: /* for int *p; p->next = ... */
case STRUCT:
case UNION:
break;
case INT:
case LONG:
case LNGLNG:
/* warning will be given by idf2sdef() */
break;
default:
if (!is_anon_idf(idf))
expr_error(exp, "selector %s applied to %s",
idf->id_text, symbol2str(tp->tp_fund));
case ERRONEOUS:
exp->ex_type = error_type;
return;
}
sd = idf2sdef(idf, tp);
if (oper == '.') {
/* there are 3 cases in which the selection can be
performed compile-time:
I: n.sel (n either an identifier or a constant)
II: (e.s1).s2 (transformed into (e.(s1+s2)))
III: (e->s1).s2 (transformed into (e->(s1+s2)))
The code performing these conversions is
extremely obscure.
*/
if (exp->ex_class == Value) {
/* It is an object we know the address of; so
we can calculate the address of the
selected member
*/
exp->VL_VALUE += sd->sd_offset;
exp->ex_type = sd->sd_type;
exp->ex_lvalue = exp->ex_type->tp_fund != ARRAY;
if (exp->ex_type == error_type) {
exp->ex_flags |= EX_ERROR;
}
}
else
if (exp->ex_class == Oper) {
struct oper *op = &(exp->ex_object.ex_oper);
if (op->op_oper == '.' || op->op_oper == ARROW) {
assert(is_cp_cst(op->op_right));
op->op_right->VL_VALUE += sd->sd_offset;
exp->ex_type = sd->sd_type;
exp->ex_lvalue = exp->ex_type->tp_fund != ARRAY;
if (exp->ex_type == error_type) {
exp->ex_flags |= EX_ERROR;
}
}
else {
exp = new_oper(sd->sd_type, exp, '.',
intexpr(sd->sd_offset, INT));
exp->ex_lvalue = sd->sd_type->tp_fund != ARRAY;
if (!exp->OP_LEFT->ex_lvalue)
exp->ex_flags |= EX_ILVALUE;
}
}
}
else { /* oper == ARROW */
if (is_ld_cst(exp)) {
exp->VL_VALUE += sd->sd_offset;
exp->ex_type = sd->sd_type;
}
else {
exp = new_oper(sd->sd_type,
exp, oper, intexpr(sd->sd_offset, INT));
}
exp->ex_lvalue = (sd->sd_type->tp_fund != ARRAY);
exp->ex_flags &= ~EX_ILVALUE;
}
if ((sd->sd_type->tp_typequal & TQ_CONST)
|| (tp->tp_typequal & TQ_CONST))
exp->ex_flags |= EX_READONLY;
if ((sd->sd_type->tp_typequal & TQ_VOLATILE)
|| (tp->tp_typequal & TQ_VOLATILE))
exp->ex_flags |= EX_VOLATILE;
if (oper == '.' && exp->ex_flags & EX_READONLY) {
exp->ex_type = qualifier_type(exp->ex_type, TQ_CONST);
}
if (exp->ex_flags & EX_VOLATILE) {
exp->ex_type = qualifier_type(exp->ex_type, TQ_VOLATILE);
}
*expp = exp;
}
void ch3incr(struct expr **expp, int oper)
{
/* The monadic prefix/postfix incr/decr operator oper is
applied to *expp.
*/
ch3asgn(expp, oper, intexpr((arith)1, INT));
}
void ch3cast(register struct expr **expp, int oper, register struct type *tp)
{
/* The expression *expp is cast to type tp; the cast is
caused by the operator oper. If the cast has
to be passed on to run time, its left operand will be an
expression of class Type.
*/
register struct type *oldtp;
register struct expr *exp = *expp;
int qual_lev, ascompat = 0;
if (oper == RETURN && tp->tp_fund == VOID) {
expr_strict(exp, "return <expression> in function returning void");
exp->ex_type = void_type;
return;
}
if (exp->ex_type->tp_fund == FUNCTION) {
function2pointer(exp);
}
if (exp->ex_type->tp_fund == ARRAY)
array2pointer(exp);
if (exp->ex_class == String)
string2pointer(exp);
oldtp = exp->ex_type;
if (oldtp->tp_size <= 0 && oldtp->tp_fund != VOID) {
expr_error(exp,"incomplete type in expression");
}
#ifndef NOBITFIELD
if (oldtp->tp_fund == FIELD) {
field2arith(expp);
ch3cast(expp, oper, tp);
return;
}
if (tp->tp_fund == FIELD) {
ch3cast(expp, oper, tp->tp_up);
return;
}
#endif /* NOBITFIELD */
switch (oper) {
default: qual_lev = -1; break;
case CAST: qual_lev = -999; break; /* ??? hack */
case CASTAB:
case '=':
case RETURN: ascompat = 1; /* assignment compatibility */
/* fallthrough */
case '-':
case '<':
case '>':
case LESSEQ:
case GREATEREQ:
case EQUAL:
case NOTEQUAL:
case ':':
qual_lev = -2;
break;
}
if (equal_type(tp, oldtp, qual_lev, 0)) {
/* life is easy */
if (ascompat && tp->tp_fund == POINTER) {
if ((tp->tp_up->tp_typequal & oldtp->tp_up->tp_typequal)
!= oldtp->tp_up->tp_typequal) {
expr_strict( exp, "qualifier error");
}
}
exp->ex_type = tp; /* so qualifiers are allright */
}
else
if (tp->tp_fund == VOID) {
/* easy again */
exp->ex_type = void_type;
}
else
if (is_arith_type(oldtp) && is_arith_type(tp)) {
int oldi = is_integral_type(oldtp);
int i = is_integral_type(tp);
if (oldi && i) {
#ifdef LINT
if (oper == CAST)
exp->ex_type = tp;
else {
int2int(expp, tp);
}
#else /* LINT */
int2int(expp, tp);
#endif /* LINT */
}
else
if (oldi && !i) {
#ifdef LINT
if (oper == CAST)
exp->ex_type = tp;
else {
int2float(expp, tp);
}
#else /* LINT */
int2float(expp, tp);
#endif /* LINT */
}
else
if (!oldi && i) {
#ifdef LINT
if (oper == CAST)
exp->ex_type = tp;
else {
float2int(expp, tp);
}
#else /* LINT */
float2int(expp, tp);
#endif /* LINT */
}
else {
/* !oldi && !i */
#ifdef LINT
if (oper == CAST)
exp->ex_type = tp;
else {
float2float(expp, tp);
}
#else /* LINT */
float2float(expp, tp);
#endif /* LINT */
}
}
else
if (oldtp->tp_fund == POINTER && tp->tp_fund == POINTER) {
switch (oper) {
case EQUAL:
case NOTEQUAL:
case '=':
case CASTAB:
case RETURN:
case ':':
if (tp->tp_up && oldtp->tp_up) {
if (tp->tp_up->tp_fund == VOID
&& oldtp->tp_up->tp_fund != FUNCTION) {
break; /* switch */
}
if (oldtp->tp_up->tp_fund == VOID
&& tp->tp_up->tp_fund != FUNCTION) {
break; /* switch */
}
if (oldtp->tp_up->tp_fund == VOID
&& is_cp_cst(exp)
&& exp->VL_VALUE == 0)
break; /* switch */
}
/* falltrough */
default:
if (oper == CASTAB)
expr_strict(exp, "incompatible pointers in call");
else
expr_strict(exp, "incompatible pointers in %s",
symbol2str(oper));
break;
case CAST: break;
}
#ifdef LINT
if (oper != CAST)
lint_ptr_conv(oldtp->tp_up->tp_fund, tp->tp_up->tp_fund);
#endif /* LINT */
exp->ex_type = tp; /* free conversion */
}
else
if (oldtp->tp_fund == POINTER && is_integral_type(tp)) {
/* from pointer to integral */
if (oper != CAST)
expr_strict(exp,
"illegal conversion of pointer to %s",
symbol2str(tp->tp_fund));
if (oldtp->tp_size > tp->tp_size)
expr_warning(exp,
"conversion of pointer to %s loses accuracy",
symbol2str(tp->tp_fund));
if (oldtp->tp_size != tp->tp_size) {
int2int(expp, tp);
} else
exp->ex_type = tp;
}
else
if (tp->tp_fund == POINTER && is_integral_type(oldtp)) {
/* from integral to pointer */
switch (oper) {
case CAST:
break;
case CASTAB:
case EQUAL:
case NOTEQUAL:
case '=':
case RETURN:
if (is_cp_cst(exp) && exp->VL_VALUE == 0)
break;
default:
expr_strict(exp,
"illegal conversion of %s to pointer",
symbol2str(oldtp->tp_fund));
break;
}
if (oldtp->tp_size > tp->tp_size)
expr_warning(exp,
"conversion of %s to pointer loses accuracy",
symbol2str(oldtp->tp_fund));
if (oldtp->tp_size != tp->tp_size) {
int2int(expp, tp);
} else
exp->ex_type = tp;
}
else
if (oldtp->tp_fund == ERRONEOUS) {
/* we just won't look */
exp->ex_type = tp; /* brute force */
}
else
if (oldtp->tp_size == tp->tp_size && oper == CAST) {
expr_strict(exp, "dubious conversion based on equal size");
exp->ex_type = tp; /* brute force */
}
else {
if (oldtp->tp_fund != ERRONEOUS && tp->tp_fund != ERRONEOUS)
expr_error(exp, "cannot convert %s to %s",
symbol2str(oldtp->tp_fund),
symbol2str(tp->tp_fund)
);
exp->ex_type = tp; /* brute force */
}
/* re-initialize exp, since *expp may have changed */
exp = *expp;
if (oper == CAST) {
exp->ex_flags |= EX_ILVALUE;
}
}
/* Determine whether two types are equal.
*/
int equal_type(register struct type *tp,register struct type *otp, int qual_lev, int diag)
{
if (tp == otp)
return 1;
if (!tp
|| !otp
|| (tp->tp_fund != otp->tp_fund)
|| (tp->tp_unsigned != otp->tp_unsigned)
|| (tp->tp_align != otp->tp_align))
return 0;
if (tp->tp_size != otp->tp_size) {
if (tp->tp_fund != ARRAY
|| (tp->tp_size != -1 && otp->tp_size != -1))
return 0;
}
if (qual_lev >= 0 && tp->tp_typequal != otp->tp_typequal) {
strict("missing or illegal qualifiers");
}
switch (tp->tp_fund) {
case FUNCTION:
/* If both types have parameter type lists, the type of
each parameter in the composite parameter type list
is the composite type of the corresponding paramaters.
*/
if (tp->tp_proto && otp->tp_proto) {
if (!equal_proto(tp->tp_proto, otp->tp_proto, diag))
return 0;
} else if (tp->tp_proto || otp->tp_proto) {
if (!legal_mixture(tp, otp, diag))
return 0;
}
return equal_type(tp->tp_up, otp->tp_up, qual_lev + 1, diag);
case ARRAY:
/* If one type is an array of known size, the composite
type is an array of that size
*/
if (tp->tp_size != otp->tp_size &&
(tp->tp_size != -1 && otp->tp_size != -1))
return 0;
return equal_type(tp->tp_up, otp->tp_up, qual_lev/* ??? +1 */, diag);
case POINTER:
return equal_type(tp->tp_up, otp->tp_up, qual_lev + 1, diag);
case FIELD:
return equal_type(tp->tp_up, otp->tp_up, qual_lev/* ??? +1 */, diag);
case STRUCT:
case UNION:
case ENUM:
return tp->tp_idf == otp->tp_idf && tp->tp_sdef == otp->tp_sdef;
default:
return 1;
}
}
int check_pseudoproto(register struct proto *pl,register struct proto *opl, int diag)
{
int retval = 1;
if (pl->pl_flag & PL_ELLIPSIS) {
if (diag) {
error("illegal ellipsis terminator");
pl->pl_flag |= PL_ERRGIVEN;
opl->pl_flag |= PL_ERRGIVEN;
}
return 0;
}
if (opl->pl_flag & PL_VOID) {
if (!(pl->pl_flag & PL_VOID)) {
if (diag) {
strict("function is defined without parameters");
}
return 0;
}
return 1;
}
while (pl && opl) {
if (!equal_type(pl->pl_type, opl->pl_type, -1, diag)) {
if (diag) {
if (!(pl->pl_flag & PL_ERRGIVEN)
&& !(opl->pl_flag & PL_ERRGIVEN))
error("incorrect type for parameter %s of definition",
opl->pl_idf->id_text);
pl->pl_flag |= PL_ERRGIVEN;
opl->pl_flag |= PL_ERRGIVEN;
}
retval = 0;
}
pl = pl->next;
opl = opl->next;
}
if (pl || opl) {
if (diag) error("incorrect number of parameters");
retval = 0;
}
return retval;
}
int legal_mixture(struct type *tp, struct type *otp, int diag)
{
struct proto *pl = tp->tp_proto, *opl = otp->tp_proto;
int retval = 1;
register struct proto *prot;
int fund;
assert( (pl != 0) ^ (opl != 0));
if (pl) {
prot = pl;
} else {
prot = opl;
}
if (!opl && otp->tp_pseudoproto) {
return check_pseudoproto(tp->tp_proto, otp->tp_pseudoproto, diag);
}
if (prot->pl_flag & PL_ELLIPSIS) {
if (prot->pl_flag & PL_ERRGIVEN) {
if (pl)
error("illegal ellipsis terminator");
else error("ellipsis terminator in previous (prototype) declaration");
prot->pl_flag |= PL_ERRGIVEN;
}
return 0;
}
while (prot) {
/* if (!(prot->pl_flag & PL_ELLIPSIS)) {} */
fund = prot->pl_type->tp_fund;
if (fund == CHAR || fund == SHORT || fund == FLOAT) {
if (diag && !(prot->pl_flag & PL_ERRGIVEN))
error("illegal %s parameter in %sdeclaration",
symbol2str(fund), (opl ? "previous (prototype) " : "" ));
prot->pl_flag |= PL_ERRGIVEN;
retval = 0;
}
prot = prot->next;
}
return retval;
}
int equal_proto(register struct proto *pl, register struct proto *opl, int diag)
{
if (pl == opl)
return 1;
/* If only one type is a function type with a parameter type list
(a function prototype), the composite type is a function
prototype with parameter type list.
*/
while ( pl && opl) {
if ((pl->pl_flag & ~PL_ERRGIVEN) != (opl->pl_flag & ~PL_ERRGIVEN) ||
!equal_type(pl->pl_type, opl->pl_type, -1, diag))
return 0;
pl = pl->next;
opl = opl->next;
}
return !(pl || opl);
}
/* check if a type has a consqualified member */
int recurqual(struct type *tp, int qual)
{
register struct sdef *sdf;
assert(tp);
if (tp->tp_typequal & qual) return 1;
switch(tp->tp_fund) {
case UNION:
case STRUCT:
case ENUM:
sdf = tp->tp_sdef;
while (sdf) {
if (recurqual(sdf->sd_type, qual))
return 1;
sdf = sdf->sd_sdef;
}
break;
}
return 0;
}
void ch3asgn(struct expr **expp, int oper, struct expr *expr)
{
/* The assignment operators.
"f op= e" should be interpreted as
"f = (typeof f)((typeof (f op e))f op (typeof (f op e))e)"
and not as "f = f op (typeof f)e".
Consider, for example, (i == 10) i *= 0.9; (i == 9), where
typeof i == int.
The resulting expression tree becomes:
op=
/ \
/ \
f (typeof (f op e))e
EVAL should however take care of evaluating (typeof (f op e))f
*/
register struct expr *exp = *expp;
int fund = exp->ex_type->tp_fund;
struct type *tp;
char *oper_string = symbol2str(oper);
/* We expect an lvalue */
if (fund == ARRAY || fund == FUNCTION) exp->ex_lvalue = 0;
if (!exp->ex_lvalue) {
expr_error(exp, "no lvalue in operand of %s", oper_string);
} else if (exp->ex_flags & EX_ILVALUE) {
expr_strict(exp, "incorrect lvalue in operand of %s", oper_string);
} else if (exp->ex_flags & EX_READONLY) {
expr_error(exp, "operand of %s is read-only", oper_string);
} else if (fund == STRUCT || fund == UNION) {
if (recurqual(exp->ex_type, TQ_CONST))
expr_error(exp,"operand of %s contains a const-qualified member",
oper_string);
}
if (oper == '=') {
ch3cast(&expr, oper, exp->ex_type);
tp = expr->ex_type;
}
else { /* turn e into e' where typeof(e') = typeof (f op e) */
struct expr *extmp = intexpr((arith)0, INT);
/* this is really $#@&*%$# ! */
/* if you correct this, please correct lint_new_oper() too */
extmp->ex_lvalue = 1;
extmp->ex_type = exp->ex_type;
ch3bin(&extmp, oper, expr);
/* Note that ch3bin creates a tree of the expression
((typeof (f op e))f op (typeof (f op e))e),
where f ~ extmp and e ~ expr.
We want to use (typeof (f op e))e.
Ch3bin does not create a tree if both operands
were illegal or constants!
*/
tp = extmp->ex_type; /* perform the arithmetic in type tp */
if (extmp->ex_class == Oper) {
expr = extmp->OP_RIGHT;
extmp->OP_RIGHT = NILEXPR;
free_expression(extmp);
}
else
expr = extmp;
}
#ifndef NOBITFIELD
exp = new_oper(fund == FIELD ? exp->ex_type->tp_up : exp->ex_type,
exp, oper, expr);
#else /* NOBITFIELD */
exp = new_oper(exp->ex_type, exp, oper, expr);
#endif /* NOBITFIELD */
exp->OP_TYPE = tp; /* for EVAL() */
exp->ex_flags |= EX_SIDEEFFECTS;
*expp = exp;
}
/* Some interesting (?) questions answered.
*/
int is_integral_type(register struct type *tp)
{
switch (tp->tp_fund) {
case CHAR:
case SHORT:
case INT:
case LONG:
case LNGLNG:
case ENUM:
return 1;
#ifndef NOBITFIELD
case FIELD:
return is_integral_type(tp->tp_up);
#endif /* NOBITFIELD */
default:
return 0;
}
}
int is_arith_type(register struct type *tp)
{
switch (tp->tp_fund) {
case CHAR:
case SHORT:
case INT:
case LONG:
case LNGLNG:
case ENUM:
case FLOAT:
case DOUBLE:
case LNGDBL:
return 1;
#ifndef NOBITFIELD
case FIELD:
return is_arith_type(tp->tp_up);
#endif /* NOBITFIELD */
default:
return 0;
}
}