ack/lang/m2/comp/chk_expr.c
1986-04-11 11:57:19 +00:00

769 lines
17 KiB
C

/* E X P R E S S I O N C H E C K I N G */
static char *RcsId = "$Header$";
/* Check expressions, and try to evaluate them as far as possible.
*/
#include <em_arith.h>
#include <em_label.h>
#include <assert.h>
#include <alloc.h>
#include "Lpars.h"
#include "idf.h"
#include "type.h"
#include "def.h"
#include "LLlex.h"
#include "node.h"
#include "scope.h"
#include "const.h"
#include "standards.h"
#include "debug.h"
int
chk_expr(expp)
register struct node *expp;
{
/* Check the expression indicated by expp for semantic errors,
identify identifiers used in it, replace constants by
their value.
*/
switch(expp->nd_class) {
case Oper:
return chk_expr(expp->nd_left) &&
chk_expr(expp->nd_right) &&
chk_oper(expp);
case Uoper:
return chk_expr(expp->nd_right) &&
chk_uoper(expp);
case Value:
switch(expp->nd_symb) {
case REAL:
case STRING:
case INTEGER:
return 1;
default:
assert(0);
}
break;
case Xset:
return chk_set(expp);
case Name:
return chk_name(expp);
case Call:
return chk_call(expp);
case Link:
return chk_name(expp);
default:
assert(0);
}
/*NOTREACHED*/
}
int
chk_set(expp)
register struct node *expp;
{
/* Check the legality of a SET aggregate, and try to evaluate it
compile time. Unfortunately this is all rather complicated.
*/
struct type *tp;
struct def *df;
register struct node *nd;
arith *set;
assert(expp->nd_symb == SET);
/* First determine the type of the set
*/
if (expp->nd_left) {
/* A type was given. Check it out
*/
(void) findname(expp->nd_left);
assert(expp->nd_left->nd_class == Def);
df = expp->nd_left->nd_def;
if ((df->df_kind != D_TYPE && df->df_kind != D_ERROR) ||
(df->df_type->tp_fund != T_SET)) {
node_error(expp, "Illegal set type");
return 0;
}
tp = df->df_type;
}
else tp = bitset_type;
/* Now check the elements given, and try to compute a constant set.
*/
set = (arith *) Malloc(tp->tp_size * sizeof(arith) / wrd_size);
nd = expp->nd_right;
while (nd) {
assert(nd->nd_class == Link && nd->nd_symb == ',');
if (!chk_el(nd->nd_left, tp->next, &set)) return 0;
nd = nd->nd_right;
}
expp->nd_type = tp;
if (set) {
/* Yes, in was a constant set, and we managed to compute it!
*/
expp->nd_class = Set;
expp->nd_set = set;
FreeNode(expp->nd_left);
FreeNode(expp->nd_right);
expp->nd_left = expp->nd_right = 0;
}
return 1;
}
int
chk_el(expp, tp, set)
register struct node *expp;
struct type *tp;
arith **set;
{
/* Check elements of a set. This routine may call itself
recursively.
Also try to compute the set!
*/
if (expp->nd_class == Link && expp->nd_symb == UPTO) {
/* { ... , expr1 .. expr2, ... }
First check expr1 and expr2, and try to compute them.
*/
if (!chk_el(expp->nd_left, tp, set) ||
!chk_el(expp->nd_right, tp, set)) {
return 0;
}
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Value) {
/* We have a constant range. Put all elements in the
set
*/
register int i;
if (expp->nd_left->nd_INT > expp->nd_right->nd_INT) {
node_error(expp, "Lower bound exceeds upper bound in range");
return rem_set(set);
}
if (*set) for (i = expp->nd_left->nd_INT + 1;
i < expp->nd_right->nd_INT; i++) {
(*set)[i/wrd_bits] |= (1 << (i % wrd_bits));
}
}
else if (*set) {
free(*set);
*set = 0;
}
return 1;
}
/* Here, a single element is checked
*/
if (!chk_expr(expp)) {
return rem_set(set);
}
if (!TstCompat(tp, expp->nd_type)) {
node_error(expp, "Set element has incompatible type");
return rem_set(set);
}
if (expp->nd_class == Value) {
if ((tp->tp_fund != T_ENUMERATION &&
(expp->nd_INT < tp->sub_lb || expp->nd_INT > tp->sub_ub))
||
(tp->tp_fund == T_ENUMERATION &&
(expp->nd_INT < 0 || expp->nd_INT > tp->enm_ncst))
) {
node_error(expp, "Set element out of range");
return rem_set(set);
}
if (*set) (*set)[expp->nd_INT/wrd_bits] |= (1 << (expp->nd_INT%wrd_bits));
}
return 1;
}
int
rem_set(set)
arith **set;
{
/* This routine is only used for error exits of chk_el.
It frees the set indicated by "set", and returns 0.
*/
if (*set) {
free((char *) *set);
*set = 0;
}
return 0;
}
struct node *
getarg(argp, bases)
struct node *argp;
{
struct type *tp;
if (!argp->nd_right) {
node_error(argp, "too few arguments supplied");
return 0;
}
argp = argp->nd_right;
if (!chk_expr(argp->nd_left)) return 0;
tp = argp->nd_left->nd_type;
if (tp->tp_fund == T_SUBRANGE) tp = tp->next;
if (!(tp->tp_fund & bases)) {
node_error(argp, "Unexpected type");
return 0;
}
return argp;
}
struct node *
getname(argp, kinds)
struct node *argp;
{
if (!argp->nd_right) {
node_error(argp, "too few arguments supplied");
return 0;
}
argp = argp->nd_right;
if (!findname(argp->nd_left)) return 0;
assert(argp->nd_left->nd_class == Def);
if (!(argp->nd_left->nd_def->df_kind & kinds)) {
node_error(argp, "Unexpected type");
return 0;
}
return argp;
}
int
chk_call(expp)
register struct node *expp;
{
/* Check something that looks like a procedure or function call.
Of course this does not have to be a call at all.
it may also be a cast or a standard procedure call.
*/
register struct node *left;
register struct node *arg;
expp->nd_type = error_type;
(void) findname(expp->nd_left); /* parser made sure it is a name */
left = expp->nd_left;
if (left->nd_type == error_type) return 0;
if (left->nd_class == Def &&
(left->nd_def->df_kind & (D_HTYPE|D_TYPE|D_HIDDEN))) {
/* A type cast. This is of course not portable.
No runtime action. Remove it.
*/
arg = expp->nd_right;
if ((! arg) || arg->nd_right) {
node_error(expp, "Only one parameter expected in type cast");
return 0;
}
arg = arg->nd_left;
if (! chk_expr(arg)) return 0;
if (arg->nd_type->tp_size != left->nd_type->tp_size) {
node_error(expp, "Size of type in type cast does not match size of operand");
return 0;
}
arg->nd_type = left->nd_type;
FreeNode(expp->nd_left);
*expp = *(arg->nd_left);
arg->nd_left = 0;
arg->nd_right = 0;
FreeNode(arg);
return 1;
}
if ((left->nd_class == Def && left->nd_def->df_kind == D_PROCEDURE) ||
left->nd_type->tp_fund == T_PROCEDURE) {
/* A procedure call. it may also be a call to a
standard procedure
*/
arg = expp;
if (left->nd_type == std_type) {
/* A standard procedure
*/
assert(left->nd_class == Def);
DO_DEBUG(3, debug("Standard name \"%s\", %d",
left->nd_def->df_idf->id_text, left->nd_def->df_value.df_stdname));
switch(left->nd_def->df_value.df_stdname) {
case S_ABS:
arg = getarg(arg, T_NUMERIC);
if (! arg) return 0;
left = arg->nd_left;
expp->nd_type = left->nd_type;
if (left->nd_class == Value) {
cstcall(expp, S_ABS);
}
break;
case S_CAP:
arg = getarg(arg, T_CHAR);
expp->nd_type = char_type;
if (!arg) return 0;
left = arg->nd_left;
if (left->nd_class == Value) {
cstcall(expp, S_CAP);
}
break;
case S_CHR:
arg = getarg(arg, T_INTORCARD);
expp->nd_type = char_type;
if (!arg) return 0;
if (arg->nd_left->nd_class == Value) {
cstcall(expp, S_CHR);
}
break;
case S_FLOAT:
arg = getarg(arg, T_INTORCARD);
expp->nd_type = real_type;
if (!arg) return 0;
break;
case S_HIGH:
arg = getarg(arg, T_ARRAY);
if (!arg) return 0;
expp->nd_type = arg->nd_left->nd_type->next;
if (!expp->nd_type) {
/* A dynamic array has no explicit
index type
*/
expp->nd_type = int_type;
}
else cstcall(expp, S_MAX);
break;
case S_MAX:
case S_MIN:
arg = getarg(arg, T_DISCRETE);
if (!arg) return 0;
expp->nd_type = arg->nd_left->nd_type;
cstcall(expp,left->nd_def->df_value.df_stdname);
break;
case S_ODD:
arg = getarg(arg, T_INTORCARD);
if (!arg) return 0;
expp->nd_type = bool_type;
if (arg->nd_left->nd_class == Value) {
cstcall(expp, S_ODD);
}
break;
case S_ORD:
arg = getarg(arg, T_DISCRETE);
if (!arg) return 0;
expp->nd_type = card_type;
if (arg->nd_left->nd_class == Value) {
cstcall(expp, S_ORD);
}
break;
case S_TSIZE: /* ??? */
case S_SIZE:
arg = getname(arg, D_FIELD|D_VARIABLE|D_TYPE|D_HIDDEN|D_HTYPE);
expp->nd_type = intorcard_type;
if (!arg) return 0;
cstcall(expp, S_SIZE);
break;
case S_TRUNC:
arg = getarg(arg, T_REAL);
if (!arg) return 0;
expp->nd_type = card_type;
break;
case S_VAL: {
struct type *tp;
arg = getname(arg, D_HIDDEN|D_HTYPE|D_TYPE);
if (!arg) return 0;
tp = arg->nd_left->nd_def->df_type;
if (tp->tp_fund == T_SUBRANGE) tp = tp->next;
if (!(tp->tp_fund & T_DISCRETE)) {
node_error(arg, "unexpected type");
return 0;
}
expp->nd_type = arg->nd_left->nd_def->df_type;
expp->nd_right = arg->nd_right;
arg->nd_right = 0;
FreeNode(arg);
arg = getarg(expp, T_INTORCARD);
if (!arg) return 0;
if (arg->nd_left->nd_class == Value) {
cstcall(expp, S_VAL);
}
break;
}
case S_ADR:
arg = getname(arg, D_VARIABLE|D_FIELD|D_PROCEDURE);
expp->nd_type = address_type;
if (!arg) return 0;
break;
case S_DEC:
case S_INC:
expp->nd_type = 0;
arg = getname(arg, D_VARIABLE|D_FIELD);
if (!arg) return 0;
if (arg->nd_right) {
arg = getarg(arg, T_INTORCARD);
if (!arg) return 0;
}
break;
case S_HALT:
expp->nd_type = 0;
break;
case S_EXCL:
case S_INCL: {
struct type *tp;
expp->nd_type = 0;
arg = getname(arg, D_VARIABLE|D_FIELD);
if (!arg) return 0;
tp = arg->nd_left->nd_type;
if (tp->tp_fund != T_SET) {
node_error(arg, "EXCL and INCL expect a SET parameter");
return 0;
}
arg = getarg(arg, T_DISCRETE);
if (!arg) return 0;
if (!TstCompat(tp->next, arg->nd_left->nd_type)) {
node_error(arg, "Unexpected type");
return 0;
}
break;
}
default:
assert(0);
}
if (arg->nd_right) {
node_error(arg->nd_right,
"too many parameters supplied");
return 0;
}
return 1;
}
/* Here, we have found a real procedure call
*/
return 1;
}
node_error(expp->nd_left, "procedure, type, or function expected");
return 0;
}
findname(expp)
register struct node *expp;
{
/* Find the name indicated by "expp", starting from the current
scope.
*/
register struct def *df;
struct def *lookfor();
register struct type *tp;
int scope;
int module;
expp->nd_type = error_type;
if (expp->nd_class == Name) {
expp->nd_def = lookfor(expp, CurrentScope, 1);
expp->nd_class = Def;
expp->nd_type = expp->nd_def->df_type;
return;
}
if (expp->nd_class == Link) {
assert(expp->nd_symb == '.');
assert(expp->nd_right->nd_class == Name);
findname(expp->nd_left);
tp = expp->nd_left->nd_type;
if (tp == error_type) {
df = ill_df;
}
else if (tp->tp_fund != T_RECORD) {
/* This is also true for modules */
node_error(expp,"Illegal selection");
df = ill_df;
}
else df = lookup(expp->nd_right->nd_IDF, tp->rec_scope);
if (!df) {
df = ill_df;
id_not_declared(expp->nd_right);
}
else if (df != ill_df) {
expp->nd_type = df->df_type;
if (!(df->df_flags & (D_EXPORTED|D_QEXPORTED))) {
node_error(expp->nd_right,
"identifier \"%s\" not exprted from qualifying module",
df->df_idf->id_text);
}
}
if (expp->nd_left->nd_class == Def) {
expp->nd_class = Def;
expp->nd_def = df;
FreeNode(expp->nd_left);
FreeNode(expp->nd_right);
expp->nd_left = expp->nd_right = 0;
}
return;
}
if (expp->nd_class == Oper) {
assert(expp->nd_symb == '[');
(void) findname(expp->nd_left);
if (chk_expr(expp->nd_right, 0) &&
expp->nd_left->nd_type != error_type &&
chk_oper(expp)) /* ??? */ ;
return 1;
}
if (expp->nd_class == Uoper && expp->nd_symb == '^') {
(void) findname(expp->nd_right);
if (expp->nd_right->nd_type != error_type &&
chk_uoper(expp)) /* ??? */ ;
}
return 0;
}
int
chk_name(expp)
register struct node *expp;
{
register struct def *df;
(void) findname(expp);
assert(expp->nd_class == Def);
df = expp->nd_def;
if (df->df_kind == D_ERROR) return 0;
if (df->df_kind & (D_ENUM | D_CONST)) {
if (df->df_kind == D_ENUM) {
expp->nd_class = Value;
expp->nd_INT = df->enm_val;
expp->nd_symb = INTEGER;
}
else if (df->df_kind == D_CONST) {
*expp = *(df->con_const);
}
}
return 1;
}
int
chk_oper(expp)
register struct node *expp;
{
/* Check a binary operation.
*/
register struct type *tpl = expp->nd_left->nd_type;
register struct type *tpr = expp->nd_right->nd_type;
char *symbol2str();
int errval = 1;
if (tpl == intorcard_type) {
if (tpr == int_type || tpr == card_type) {
expp->nd_left->nd_type = tpl = tpr;
}
}
if (tpr == intorcard_type) {
if (tpl == int_type || tpl == card_type) {
expp->nd_right->nd_type = tpr = tpl;
}
}
expp->nd_type = error_type;
if (expp->nd_symb == IN) {
/* Handle this one specially */
expp->nd_type = bool_type;
if (tpr->tp_fund != T_SET) {
node_error(expp, "RHS of IN operator not a SET type");
return 0;
}
if (!TstCompat(tpl, tpr->next)) {
node_error(expp, "IN operator: type of LHS not compatible with element type of RHS");
return 0;
}
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Set) {
cstset(expp);
}
return 1;
}
if (expp->nd_symb == '[') {
/* Handle ARRAY selection specially too! */
if (tpl->tp_fund != T_ARRAY) {
node_error(expp,
"array index not belonging to an ARRAY");
return 0;
}
if (!TstCompat(tpl->next, tpr)) {
node_error(expp, "incompatible index type");
return 0;
}
expp->nd_type = tpl->arr_elem;
return 1;
}
if (tpl->tp_fund == T_SUBRANGE) tpl = tpl->next;
expp->nd_type = tpl;
if (!TstCompat(tpl, tpr)) {
node_error(expp,
"Incompatible types for operator \"%s\"",
symbol2str(expp->nd_symb));
return 0;
}
switch(expp->nd_symb) {
case '+':
case '-':
case '*':
switch(tpl->tp_fund) {
case T_INTEGER:
case T_CARDINAL:
case T_INTORCARD:
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Value) {
cstbin(expp);
}
return 1;
case T_SET:
if (expp->nd_left->nd_class == Set &&
expp->nd_right->nd_class == Set) {
cstset(expp);
}
/* Fall through */
case T_REAL:
return 1;
}
break;
case '/':
switch(tpl->tp_fund) {
case T_SET:
if (expp->nd_left->nd_class == Set &&
expp->nd_right->nd_class == Set) {
cstset(expp);
}
/* Fall through */
case T_REAL:
return 1;
}
break;
case DIV:
case MOD:
if (tpl->tp_fund & T_INTORCARD) {
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Value) {
cstbin(expp);
}
return 1;
}
break;
case OR:
case AND:
if (tpl == bool_type) {
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Value) {
cstbin(expp);
}
return 1;
}
errval = 3;
break;
case '=':
case '#':
case GREATEREQUAL:
case LESSEQUAL:
case '<':
case '>':
switch(tpl->tp_fund) {
case T_SET:
if (expp->nd_symb == '<' || expp->nd_symb == '>') {
break;
}
if (expp->nd_left->nd_class == Set &&
expp->nd_right->nd_class == Set) {
cstset(expp);
}
return 1;
case T_INTEGER:
case T_CARDINAL:
case T_ENUMERATION: /* includes boolean */
case T_CHAR:
case T_INTORCARD:
if (expp->nd_left->nd_class == Value &&
expp->nd_right->nd_class == Value) {
cstbin(expp);
}
return 1;
case T_POINTER:
if (!(expp->nd_symb == '=' || expp->nd_symb == '#')) {
break;
}
/* Fall through */
case T_REAL:
return 1;
}
default:
assert(0);
}
switch(errval) {
case 1:
node_error(expp,"Operator \"%s\": illegal operand type(s)", symbol2str(expp->nd_symb));
break;
case 3:
node_error(expp, "BOOLEAN type(s) expected");
break;
default:
assert(0);
}
return 0;
}
int
chk_uoper(expp)
register struct node *expp;
{
/* Check an unary operation.
*/
register struct type *tpr = expp->nd_right->nd_type;
if (tpr->tp_fund == T_SUBRANGE) tpr = tpr->next;
expp->nd_type = tpr;
switch(expp->nd_symb) {
case '+':
if (tpr->tp_fund & T_NUMERIC) {
expp->nd_token = expp->nd_right->nd_token;
FreeNode(expp->nd_right);
expp->nd_right = 0;
return 1;
}
break;
case '-':
if (tpr->tp_fund & T_INTORCARD) {
if (expp->nd_right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
else if (tpr->tp_fund == T_REAL) {
if (expp->nd_right->nd_class == Value) {
expp->nd_token = expp->nd_right->nd_token;
if (*(expp->nd_REL) == '-') {
expp->nd_REL++;
}
else expp->nd_REL--;
FreeNode(expp->nd_right);
expp->nd_right = 0;
}
return 1;
}
break;
case NOT:
if (tpr == bool_type) {
if (expp->nd_right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
break;
case '^':
if (tpr->tp_fund != T_POINTER) break;
expp->nd_type = tpr->next;
return 1;
default:
assert(0);
}
node_error(expp, "illegal operand for unary operator \"%s\"",
symbol2str(expp->nd_symb));
return 0;
}