ack/util/mcgg/iburg.c
David Given 88fb231d6e Better constraint syntax; mcgg now passes register usage information up to mcg;
mcg can track individual hop inputs and outputs (needed for live range
analysis!); the register allocator now puts the basic blocks into the right
order in preparation for live range analysis.
2016-10-05 22:56:25 +02:00

1299 lines
28 KiB
C

#include <assert.h>
#include <unistd.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <ctype.h>
#include <string.h>
#include <limits.h>
#include <errno.h>
#include <inttypes.h>
#include "iburg.h"
#include "ircodes.h"
#include "astring.h"
#include "smap.h"
#include "mcgg.h"
static char rcsid[] = "$Id$";
int maxcost = SHRT_MAX / 2;
static char* prefix = "burm";
static int Tflag = 1; /* tracing */
static int ntnumber = 0;
static Nonterm start = 0;
static Term terms;
static Nonterm nts;
static Rule rules;
static int nrules;
static SMAPOF(struct reg) registers;
static SMAPOF(struct regattr) registerattrs;
static void print(char* fmt, ...);
static void ckreach(Nonterm p);
static void registerterminals(void);
static struct regattr* makeregattr(const char* id);
static void emitclosure(Nonterm nts);
static void emitcost(Tree t, const char* v);
static void emitcostcalc(Rule r);
static void emitdefs(Nonterm nts, int ntnumber);
static void emitfuncs(void);
static void emitheader(void);
static void emitinsndata(Rule rules);
static void emitkids(Rule rules, int nrules);
static void emitlabel(Nonterm start);
static void emitleaf(Term p, int ntnumber);
static void emitnts(Rule rules, int nrules);
static void emitpredicatedefinitions(Rule rules);
static void emitrecord(char* pre, Rule r, int cost);
static void emitregisterattrs();
static void emitregisters();
static void emitrule(Nonterm nts);
static void emitstate(Term terms, Nonterm start, int ntnumber);
static void emitstring(Rule rules);
static void emitstruct(Nonterm nts, int ntnumber);
static void emitterms(Term terms);
static void emittest(Tree t, const char* v, const char* suffix);
extern int yy_flex_debug;
int main(int argc, char* argv[])
{
int c, i;
Nonterm p;
#if 0
extern int yydebug;
yydebug = 1;
#endif
infp = stdin;
outfp = stdout;
yy_flex_debug = 0;
for (;;)
{
int opt = getopt(argc, argv, "p:i:o:yf");
if (opt == -1)
break;
switch (opt)
{
case 'p':
prefix = optarg;
break;
case 'i':
infp = fopen(optarg, "r");
if (!infp)
{
yyerror("cannot open input file: %s\n", strerror(errno));
exit(1);
}
break;
case 'o':
outfp = fopen(optarg, "w");
if (!outfp)
{
yyerror("cannot open output file: %s\n", strerror(errno));
exit(1);
}
break;
case 'y':
{
extern int yydebug;
yydebug = 1;
break;
}
case 'f':
{
yy_flex_debug = 1;
break;
}
default:
yyerror("usage: %s [-p prefix] < input > output\n", argv[0]);
exit(1);
}
}
emitheader();
registerterminals();
start = nonterm("stmt", true);
makeregattr("bytes1");
makeregattr("bytes2");
makeregattr("bytes4");
makeregattr("bytes8");
/* Define some standard terms. */
{
const static struct terminfo reg = { "reg", NULL, "" };
const static struct terminfo REG = { "REG", NULL, NULL };
const static struct terminfo NOP = { "NOP", NULL, NULL };
nonterm("reg", true);
rule(NULL, tree(&reg, NULL, NULL))->cost = 1;
rule(&reg, tree(&REG, NULL, NULL))->cost = 1;
rule(&reg, tree(&NOP, tree(&reg, NULL, NULL), NULL))->cost = 1;
}
yyin = infp;
yyparse();
if (start)
ckreach(start);
#if 0
for (p = nts; p; p = p->link)
if (!p->reached)
yyerror("can't reach non-terminal `%s'\n", p->name);
#endif
emitregisterattrs();
emitregisters();
emitdefs(nts, ntnumber);
emitstruct(nts, ntnumber);
emitnts(rules, nrules);
emitterms(terms);
emitstring(rules);
emitrule(nts);
emitclosure(nts);
emitpredicatedefinitions(rules);
emitinsndata(rules);
if (start)
emitstate(terms, start, ntnumber);
print("#ifdef STATE_LABEL\n");
if (start)
emitlabel(start);
emitkids(rules, nrules);
emitfuncs();
print("#endif\n");
print("#include \"mcgg_generated_footer.h\"\n");
return errcnt > 0;
}
static void registerterminal(const struct ir_data* data, int iropcode, int size)
{
const char* s = (size == 0) ? data->name : aprintf("%s%d", data->name, size);
int esn = ir_to_esn(iropcode, size);
term(s, esn);
}
static void registerterminals(void)
{
int i;
for (i=0; i<IR__COUNT; i++)
{
if (ir_data[i].flags & IRF_SIZED)
{
registerterminal(&ir_data[i], i, 1);
registerterminal(&ir_data[i], i, 2);
registerterminal(&ir_data[i], i, 4);
registerterminal(&ir_data[i], i, 8);
}
else
registerterminal(&ir_data[i], i, 0);
}
}
struct entry
{
union
{
const char* name;
struct term t;
struct nonterm nt;
struct reg r;
struct regattr rc;
} sym;
struct entry* link;
} * table[211];
#define HASHSIZE (sizeof table / sizeof table[0])
/* hash - return hash number for str */
static unsigned hash(const char* str)
{
unsigned h = 0;
while (*str)
h = (h << 1) + *str++;
return h;
}
/* lookup - lookup symbol name */
void* lookup(const char* name)
{
struct entry* p = table[hash(name) % HASHSIZE];
for (; p; p = p->link)
if (strcmp(name, p->sym.name) == 0)
return &p->sym;
return 0;
}
/* install - install symbol name */
static void* install(const char* name)
{
struct entry* p = calloc(1, sizeof *p);
int i = hash(name) % HASHSIZE;
p->sym.name = name;
p->link = table[i];
table[i] = p;
return &p->sym;
}
struct reg* makereg(const char* id)
{
struct reg* p = smap_get(&registers, id);
static int number = 0;
if (p)
yyerror("redefinition of '%s'", id);
p = calloc(1, sizeof(*p));
p->name = id;
p->number = number++;
smap_put(&registers, id, p);
return p;
}
struct regattr* makeregattr(const char* id)
{
struct regattr* p = smap_get(&registerattrs, id);
static int number = 0;
if (p)
yyerror("redefinition of '%s'", id);
p = calloc(1, sizeof(*p));
p->name = id;
p->number = number++;
smap_put(&registerattrs, id, p);
return p;
}
void addregattr(struct reg* reg, const char* id)
{
struct regattr* p = smap_get(&registerattrs, id);
if (!p)
p = makeregattr(id);
reg->attrs |= 1<<(p->number);
}
struct regattr* getregattr(const char* id)
{
struct regattr* p = smap_get(&registerattrs, id);
if (!p)
yyerror("'%s' is not the name of a register class", id);
return p;
}
/* nonterm - create a new terminal id, if necessary */
Nonterm nonterm(const char* id, bool allocate)
{
Nonterm p = lookup(id);
Nonterm* q = &nts;
if (p && p->kind == NONTERM)
return p;
if (p)
yyerror("redefinition of '%s' as something else\n", id);
if (!allocate)
yyerror("'%s' has not been declared\n", id);
p = install(id);
p->kind = NONTERM;
p->number = ++ntnumber;
if (p->number == 1)
start = p;
while (*q && (*q)->number < p->number)
q = &(*q)->link;
assert(*q == 0 || (*q)->number != p->number);
p->link = *q;
*q = p;
return p;
}
/* term - create a new terminal id with external symbol number esn */
Term term(const char* id, int esn)
{
Term p = lookup(id);
Term* q = &terms;
if (p)
yyerror("redefinition of '%s'\n", id);
p = install(id);
p->kind = TERM;
p->esn = esn;
p->arity = -1;
while (*q && (*q)->esn < p->esn)
q = &(*q)->link;
if (*q && (*q)->esn == p->esn)
yyerror("duplicate external symbol number `%s=%d'\n",
p->name, p->esn);
p->link = *q;
*q = p;
return p;
}
/* tree - create & initialize a tree node with the given fields */
Tree tree(const struct terminfo* ti, Tree left, Tree right)
{
Tree t = calloc(1, sizeof *t);
Term p = lookup(ti->name);
int arity = 0;
if (left && right)
arity = 2;
else if (left)
arity = 1;
if (p == NULL && arity > 0)
{
yyerror("undefined terminal `%s'\n", ti->name);
p = term(ti->name, -1);
}
else if (p == NULL && arity == 0)
p = (Term)nonterm(ti->name, false);
else if (p && p->kind == NONTERM && arity > 0)
{
yyerror("`%s' is a non-terminal\n", ti->name);
p = term(ti->name, -1);
}
if (p->kind == TERM && p->arity == -1)
p->arity = arity;
if (p->kind == TERM && arity != p->arity)
yyerror("inconsistent arity for terminal `%s'\n", ti->name);
t->op = p;
t->nterms = p->kind == TERM;
if (t->left = left)
t->nterms += left->nterms;
if (t->right = right)
t->nterms += right->nterms;
/* Special rules that have no output register attribute use "" as the
* attribute name; these can't be made by the grammar. */
t->label = ti->label;
if ((p->kind == TERM) && (ti->attr))
yyerror("can't specify an input register attribute for terminal '%s'", ti->name);
if (p->kind == NONTERM)
{
Nonterm nt = (Nonterm)p;
if (nt->is_fragment && ti->attr)
yyerror("can't specify an input register attribute for fragment '%s'", ti->name);
if (!nt->is_fragment && !ti->attr)
yyerror("must specify an input register attribute for non-fragment '%s'", ti->name);
if (ti->attr && ti->attr[0])
{
nt->attr = smap_get(&registerattrs, ti->attr);
if (!nt->attr)
yyerror("'%s' doesn't seem to be a known register attribute", ti->attr);
}
}
return t;
}
/* rule - create & initialize a rule with the given fields */
Rule rule(const struct terminfo* ti, Tree pattern)
{
static int number = 1;
static const struct terminfo stmt = { "stmt", NULL, NULL };
Rule r = calloc(1, sizeof *r);
Rule *q;
Term p = pattern->op;
if (!ti)
ti = &stmt;
nrules++;
r->lineno = yylineno;
r->lhs = nonterm(ti->name, false);
r->packed = ++r->lhs->lhscount;
for (q = &r->lhs->rules; *q; q = &(*q)->decode)
;
*q = r;
r->pattern = pattern;
r->ern = number++;
if (p->kind == TERM)
{
r->next = p->rules;
p->rules = r;
}
else if (pattern->left == NULL && pattern->right == NULL)
{
Nonterm p = pattern->op;
r->chain = p->chain;
p->chain = r;
}
for (q = &rules; *q && (*q)->ern < r->ern; q = &(*q)->link)
;
if (*q && (*q)->ern == r->ern)
yyerror("duplicate external rule number `%d'\n", r->ern);
r->link = *q;
*q = r;
r->label = ti->label;
if (r->lhs->is_fragment && ti->attr)
yyerror("can't specify an output register attribute for a fragment");
if (!r->lhs->is_fragment && !ti->attr && (r->lhs->number != NONTERM_STMT))
yyerror("must specify an output register attribute for non-fragments");
/* Special rules that have no output register attribute use "" as the
* attribute name; these can't be made by the grammar. */
if (ti->attr && ti->attr[0])
{
r->attr = smap_get(&registerattrs, ti->attr);
if (!r->attr)
yyerror("'%s' doesn't seem to be a known register attribute", ti->attr);
}
return r;
}
/* print - formatted output */
static void print(char* fmt, ...)
{
va_list ap;
va_start(ap, fmt);
for (; *fmt; fmt++)
if (*fmt == '%')
switch (*++fmt)
{
case 'd':
fprintf(outfp, "%d", va_arg(ap, int));
break;
case 'x':
fprintf(outfp, "%x", va_arg(ap, uint32_t));
break;
case 's':
fputs(va_arg(ap, char*), outfp);
break;
case 'P':
fprintf(outfp, "%s_", prefix);
break;
case 'T':
{
Tree t = va_arg(ap, Tree);
print("%S", t->op);
if (t->left && t->right)
print("(%T,%T)", t->left, t->right);
else if (t->left)
print("(%T)", t->left);
break;
}
case 'R':
{
Rule r = va_arg(ap, Rule);
print("%S: %T", r->lhs, r->pattern);
break;
}
case 'S':
fputs(va_arg(ap, Term)->name, outfp);
break;
case '1':
case '2':
case '3':
case '4':
case '5':
{
int n = *fmt - '0';
while (n-- > 0)
putc('\t', outfp);
break;
}
default:
putc(*fmt, outfp);
break;
}
else
putc(*fmt, outfp);
va_end(ap);
}
void printlineno(void)
{
//print("#line %d\n", yylineno);
}
/* reach - mark all non-terminals in tree t as reachable */
static void reach(Tree t)
{
Nonterm p = t->op;
if (p->kind == NONTERM)
if (!p->reached)
ckreach(p);
if (t->left)
reach(t->left);
if (t->right)
reach(t->right);
}
/* ckreach - mark all non-terminals reachable from p */
static void ckreach(Nonterm p)
{
Rule r;
p->reached = 1;
for (r = p->rules; r; r = r->decode)
reach(r->pattern);
}
static void emitregisterattrs(void)
{
int i;
print("const char* %Pregister_class_names[] = {\n");
for (i=0; i<registerattrs.count; i++)
{
struct regattr* rc = registerattrs.item[i].right;
assert(rc->number == i);
print("%1\"%s\",\n", rc->name);
}
print("};\n\n");
}
static void emitregisters(void)
{
int i;
print("const struct %Pregister_data %Pregister_data[] = {\n");
for (i=0; i<registers.count; i++)
{
struct reg* r = registers.item[i].right;
assert(r->number == i);
print("%1{ \"%s\", 0x%x },\n", r->name, r->attrs);
}
print("%1{ NULL }\n");
print("};\n\n");
}
/* emitcase - emit one case in function state */
static void emitcase(Term p, int ntnumber)
{
Rule r;
if (!p->rules)
return;
print("%1case %d: /* %S */\n", p->esn, p);
switch (p->arity)
{
case 0:
case -1:
break;
case 1:
print("%2assert(l);\n");
break;
case 2:
print("%2assert(l && r);\n");
break;
default:
assert(0);
}
for (r = p->rules; r; r = r->next)
{
switch (p->arity)
{
case 0:
case -1:
print("%2{%1/* %R */\n%3c = ", r);
emitcostcalc(r);
break;
case 1:
if (r->pattern->nterms > 1)
{
print("%2if (%1/* %R */\n", r);
emittest(r->pattern->left, "l", " ");
print("%2) {\n%3c = ");
}
else
{
print("%2{%1/* %R */\n%3c = ", r);
}
emitcostcalc(r);
emitcost(r->pattern->left, "l");
break;
case 2:
if (r->pattern->nterms > 1)
{
print("%2if (%1/* %R */\n", r);
emittest(r->pattern->left, "l",
r->pattern->right->nterms ? " && " : " ");
emittest(r->pattern->right, "r", " ");
print("%2) {\n%3c = ");
}
else
{
print("%2{%1/* %R */\n%3c = ", r);
}
emitcostcalc(r);
emitcost(r->pattern->left, "l");
emitcost(r->pattern->right, "r");
break;
default:
assert(0);
}
print("%d);\n", r->cost);
emitrecord("\t\t\t", r, 0);
print("%2}\n");
}
print("%2break;\n");
}
/* emitclosure - emit the closure functions */
static void emitclosure(Nonterm nts)
{
Nonterm p;
for (p = nts; p; p = p->link)
if (p->chain)
print("static void %Pclosure_%S(struct %Pstate *, int);\n", p);
print("\n");
for (p = nts; p; p = p->link)
if (p->chain)
{
Rule r;
print("static void %Pclosure_%S(struct %Pstate *p, int c) {\n", p);
for (r = p->chain; r; r = r->chain)
emitrecord("\t", r, r->cost);
print("}\n\n");
}
}
/* emitcost - emit cost computation for tree t */
static void emitcost(Tree t, const char* v)
{
Nonterm p = t->op;
if (p->kind == TERM)
{
if (t->left)
emitcost(t->left, aprintf("%s->left", v));
if (t->right)
emitcost(t->right, aprintf("%s->right", v));
}
else
print("%s->cost[%P%S_NT] + ", v, p);
}
/* emitdefs - emit non-terminal defines and data structures */
static void emitdefs(Nonterm nts, int ntnumber)
{
Nonterm p;
for (p = nts; p; p = p->link)
print("#define %P%S_NT %d\n", p, p->number);
print("#define %Pmax_nt %d\n\n", ntnumber);
print("const char *%Pntname[] = {\n%10,\n");
for (p = nts; p; p = p->link)
print("%1\"%S\",\n", p);
print("%10\n};\n\n");
}
/* emitfuncs - emit functions to access node fields */
static void emitfuncs(void)
{
print("int %Pop_label(NODEPTR_TYPE p) {\n"
"%1%Passert(p, PANIC(\"NULL tree in %Pop_label\\n\"));\n"
"%1return OP_LABEL(p);\n}\n\n");
print("STATE_TYPE %Pstate_label(NODEPTR_TYPE p) {\n"
"%1%Passert(p, PANIC(\"NULL tree in %Pstate_label\\n\"));\n"
"%1return STATE_LABEL(p);\n}\n\n");
print("NODEPTR_TYPE %Pchild(NODEPTR_TYPE p, int index) {\n"
"%1%Passert(p, PANIC(\"NULL tree in %Pchild\\n\"));\n"
"%1switch (index) {\n%1case 0:%1return LEFT_CHILD(p);\n"
"%1case 1:%1return RIGHT_CHILD(p);\n%1}\n"
"%1%Passert(0, PANIC(\"Bad index %%d in %Pchild\\n\", index));\n%1return 0;\n}\n\n");
}
/* emitheader - emit initial definitions */
static void emitheader(void)
{
print("#include \"mcgg_generated_header.h\"\n");
if (Tflag)
print("static NODEPTR_TYPE %Pnp;\n\n");
}
/* computekids - compute paths to kids in tree t */
static char* computekids(Tree node, const char* v, char* bp, int* ip)
{
Term t = node->op;
if (!node->left && !node->right)
{
sprintf(bp, "\t\tkids[%d] = %s;\n", (*ip)++, v);
bp += strlen(bp);
}
if (t->kind == TERM)
{
if (t->arity >= 1)
bp = computekids(node->left, aprintf("LEFT_CHILD(%s)", v), bp, ip);
if (t->arity == 2)
bp = computekids(node->right, aprintf("RIGHT_CHILD(%s)", v), bp, ip);
}
return bp;
}
/* emitkids - emit burm_kids */
static void emitkids(Rule rules, int nrules)
{
int i;
Rule r, * rc = calloc(nrules+1, sizeof *rc);
char** str = calloc(nrules+1, sizeof *str);
for (i = 0, r = rules; r; r = r->link)
{
int j = 0;
char buf[1024], * bp = buf;
*computekids(r->pattern, "p", bp, &j) = 0;
for (j = 0; str[j] && strcmp(str[j], buf); j++)
;
if (str[j] == NULL)
str[j] = strdup(buf);
r->kids = rc[j];
rc[j] = r;
}
print("NODEPTR_TYPE *%Pkids(NODEPTR_TYPE p, int eruleno, NODEPTR_TYPE kids[]) {\n"
"%1%Passert(p, PANIC(\"NULL tree in %Pkids\\n\"));\n"
"%1%Passert(kids, PANIC(\"NULL kids in %Pkids\\n\"));\n"
"%1switch (eruleno) {\n");
for (i = 0; r = rc[i]; i++)
{
for (; r; r = r->kids)
print("%1case %d: /* %R */\n", r->ern, r);
print("%s%2break;\n", str[i]);
}
print("%1default:\n%2%Passert(0, PANIC(\"Bad external rule number %%d in %Pkids\\n\", eruleno));\n%1}\n%1return kids;\n}\n\n");
}
/* emitlabel - emit the labelling functions */
static void emitlabel(Nonterm start)
{
print("static void %Plabel1(NODEPTR_TYPE p) {\n"
"%1%Passert(p, PANIC(\"NULL tree in %Plabel\\n\"));\n"
"%1switch (%Parity[OP_LABEL(p)]) {\n"
"%1case 0:\n");
if (Tflag)
print("%2%Pnp = p;\n");
print("%2STATE_LABEL(p) = %Pstate(p, 0, 0);\n%2break;\n"
"%1case 1:\n%2%Plabel1(LEFT_CHILD(p));\n");
if (Tflag)
print("%2%Pnp = p;\n");
print("%2STATE_LABEL(p) = %Pstate(p,\n"
"%3STATE_LABEL(LEFT_CHILD(p)), 0);\n%2break;\n"
"%1case 2:\n%2%Plabel1(LEFT_CHILD(p));\n%2%Plabel1(RIGHT_CHILD(p));\n");
if (Tflag)
print("%2%Pnp = p;\n");
print("%2STATE_LABEL(p) = %Pstate(p,\n"
"%3STATE_LABEL(LEFT_CHILD(p)),\n%3STATE_LABEL(RIGHT_CHILD(p)));\n%2break;\n"
"%1}\n}\n\n");
print(
"STATE_TYPE %Plabel(NODEPTR_TYPE p) {\n%1%Plabel1(p);\n"
"%1return ((struct %Pstate *)STATE_LABEL(p))->rule.%P%S ? STATE_LABEL(p) : 0;\n"
"}\n\n",
start);
}
/* closure - fill in cost & rule with results of chain rules w/p as rhs */
static void closure(int cost[], Rule rule[], Nonterm p, int c)
{
Rule r;
for (r = p->chain; r; r = r->chain)
if (c + r->cost < cost[r->lhs->number])
{
cost[r->lhs->number] = c + r->cost;
rule[r->lhs->number] = r;
closure(cost, rule, r->lhs, c + r->cost);
}
}
/* computents - fill in bp with burm_nts vector for tree t */
static char* computents(Tree t, char* bp)
{
if (t)
{
Nonterm p = t->op;
if (!t->left && !t->right)
{
if (p->kind == NONTERM)
sprintf(bp, "%s_%s_NT, ", prefix, p->name);
else
sprintf(bp, "0, ");
bp += strlen(bp);
}
else
bp = computents(t->right, computents(t->left, bp));
}
return bp;
}
/* emitnts - emit burm_nts ragged array */
static void emitnts(Rule rules, int nrules)
{
Rule r;
int i, j, * nts = calloc(nrules, sizeof *nts);
char** str = calloc(nrules, sizeof *str);
for (i = 0, r = rules; r; r = r->link)
{
char buf[1024];
*computents(r->pattern, buf) = 0;
for (j = 0; str[j] && strcmp(str[j], buf); j++)
;
if (str[j] == NULL)
{
print("static const short %Pnts_%d[] = { %s0 };\n", j, buf);
str[j] = strdup(buf);
}
nts[i++] = j;
}
print("\nconst short *%Pnts[] = {\n");
for (i = j = 0, r = rules; r; r = r->link)
{
for (; j < r->ern; j++)
print("%10,%1/* %d */\n", j);
print("%1%Pnts_%d,%1/* %d */\n", nts[i++], j++);
}
print("};\n\n");
}
/* emitrecord - emit code that tests for a winning match of rule r */
static void emitrecord(char* pre, Rule r, int cost)
{
print("%sif (", pre);
if (Tflag)
print("%Ptrace(%Pnp, %d, c + %d, p->cost[%P%S_NT]), ",
r->ern, cost, r->lhs);
print("c + %d < p->cost[%P%S_NT]) {\n"
"%s%1p->cost[%P%S_NT] = c + %d;\n%s%1p->rule.%P%S = %d;\n",
cost, r->lhs, pre, r->lhs, cost, pre, r->lhs,
r->packed);
if (r->lhs->chain)
print("%s%1%Pclosure_%S(p, c + %d);\n", pre, r->lhs, cost);
print("%s}\n", pre);
}
/* emitrule - emit decoding vectors and burm_rule */
static void emitrule(Nonterm nts)
{
Nonterm p;
for (p = nts; p; p = p->link)
{
Rule r;
print("static const short %Pdecode_%S[] = {\n%10,\n", p);
for (r = p->rules; r; r = r->decode)
print("%1%d,\n", r->ern);
print("};\n\n");
}
print("int %Prule(STATE_TYPE state, int goalnt) {\n"
"%1%Passert(goalnt >= 1 && goalnt <= %d, PANIC(\"Bad goal nonterminal %%d in %Prule\\n\", goalnt));\n"
"%1if (!state)\n%2return 0;\n%1switch (goalnt) {\n",
ntnumber);
for (p = nts; p; p = p->link)
print("%1case %P%S_NT:"
"%1return %Pdecode_%S[((struct %Pstate *)state)->rule.%P%S];\n",
p, p, p);
print("%1default:\n%2%Passert(0, PANIC(\"Bad goal nonterminal %%d in %Prule\\n\", goalnt));\n%1}\n%1return 0;\n}\n\n");
}
static void print_path(uint32_t path)
{
int i = 0;
while (path > 0)
{
switch (path % 3)
{
case 1: print("LEFT_CHILD("); break;
case 2: print("RIGHT_CHILD("); break;
}
path /= 3;
i++;
}
print("node");
while (i > 0)
{
print(")");
i--;
}
}
static const uint32_t PATH_MISSING = 0xffffffff;
static uint32_t find_label(Tree root, const char* name, uint32_t path, Tree* found)
{
uint32_t p;
if (root->label && (strcmp(root->label, name) == 0))
{
if (found)
*found = root;
return path;
}
p = PATH_MISSING;
if (root->left && (p == PATH_MISSING))
p = find_label(root->left, name, path*3 + 1, found);
if (root->right && (p == PATH_MISSING))
p = find_label(root->right, name, path*3 + 2, found);
return p;
}
static void label_not_found(Rule rule, const char* label)
{
yylineno = rule->lineno;
yyerror("label '%s' not found", label);
exit(1);
}
static bool find_child_index(Tree node, const char* name, int* index, Tree* found)
{
/* This must return the same ordering as the burm_kids() function uses. */
if (node->label && strcmp(node->label, name) == 0)
{
if (found)
*found = node;
return true;
}
if (!node->left && !node->right)
(*index)++;
if (node->left && find_child_index(node->left, name, index, found))
return true;
if (node->right && find_child_index(node->right, name, index, found))
return true;
return false;
}
/* emitpredicates - emit predicates for rules */
static void emitpredicatedefinitions(Rule r)
{
int i;
while (r)
{
print("/* %R */\n", r);
print("static int %Padjust_cost_%d(NODEPTR_TYPE node, int cost) {\n", r->ern);
for (i=0; i<r->prefers.count; i++)
{
struct expr* p = r->prefers.item[i];
bool first = true;
print("%1if (%Ppredicate_%s(", p->name);
p = p->next;
while (p)
{
uint32_t path = find_label(r->pattern, p->name, 0, NULL);
if (path == PATH_MISSING)
label_not_found(r, p->name);
if (!first)
print(", ");
else
first = false;
print_path(path);
p = p->next;
}
print(")) cost -= 1;\n");
}
print("%1if (cost > %d) return %d;\n", maxcost, maxcost);
print("%1if (cost < 1) return 1;\n");
print("%1return cost;\n");
print("}\n\n");
r = r->link;
}
}
static void emit_input_regs(Tree node, int* index)
{
/* This must return the same ordering as the burm_kids() function uses. */
Nonterm nt = node->op;
if ((nt->kind == NONTERM) && !nt->is_fragment && !node->left && !node->right)
{
uint32_t attr = 0;
if (nt->attr->number)
attr = 1<<nt->attr->number;
print("%1data->constrain_input_reg(%d, 0x%x);\n", *index, attr);
}
if (!node->left && !node->right)
(*index)++;
if (node->left)
emit_input_regs(node->left, index);
if (node->right)
emit_input_regs(node->right, index);
}
/* emitinsndata - emit the code generation data */
static void emitinsndata(Rule rules)
{
int k;
Rule r;
r = rules;
while (r)
{
struct stringfragment* f = r->code.first;
yylineno = r->lineno;
if (!f)
{
/* This instruction has no code; make sure it's not a fragment. */
if (r->lhs->is_fragment)
{
yylineno = r->lineno;
yyerror("rule is a fragment, but doesn't emit anything");
}
}
print("/* %R */\n", r);
print("static void %Pemitter_%d(const struct %Pemitter_data* data) {\n", r->ern);
if (r->attr)
print("%1data->constrain_output_reg(0x%x);\n", 1<<r->attr->number);
{
int index = 0;
emit_input_regs(r->pattern, &index);
}
while (f)
{
switch (f->data[0])
{
case '%':
{
const char* label = f->data + 1;
if (r->label && (strcmp(label, r->label) == 0))
print("%1data->emit_return_reg();\n", label);
else
{
Tree node;
int index = 0;
if (!find_child_index(r->pattern, label, &index, &node))
label_not_found(r, label);
Nonterm nt = node->op;
if (nt->kind == NONTERM)
{
if (nt->is_fragment)
print("%1data->emit_fragment(");
else
print("%1data->emit_reg(");
}
else
print("%1data->emit_reg(");
print("%d);\n", index);
}
break;
}
case '$':
{
const char* label = f->data + 1;
int index = 0;
if (!find_child_index(r->pattern, label, &index, NULL))
label_not_found(r, label);
print("%1data->emit_value(%d);\n", index);
break;
}
case '\n':
assert(f->data[1] == 0);
print("%1data->emit_eoi();\n");
break;
default:
print("%1data->emit_string(\"%s\");\n", f->data);
}
f = f->next;
}
print("}\n\n");
r = r->link;
}
r = rules;
print("const struct %Pinstruction_data %Pinstruction_data[] = {\n");
k = 0;
while (r)
{
for (; k < r->ern; k++)
print("%1{ 0 }, /* %d */\n", k);
k++;
print("%1{ /* %d: %R */\n", r->ern, r);
print("%2\"%R\",\n", r);
print("%2&%Pemitter_%d,\n", r->ern);
print("%2%s,\n", r->lhs->is_fragment ? "true" : "false");
print("%1},\n");
r = r->link;
}
print("};\n\n");
}
/* emitcost - emit a cost calculation via a predicate */
static void emitcostcalc(Rule r)
{
print("%Padjust_cost_%d(node, ", r->ern);
}
/* emitstate - emit state function */
static void emitstate(Term terms, Nonterm start, int ntnumber)
{
int i;
Term p;
print("STATE_TYPE %Pstate(NODEPTR_TYPE node, STATE_TYPE left, STATE_TYPE right) {\n%1int c;\n"
"%1int op = OP_LABEL(node);\n"
"%1struct %Pstate* p;\n"
"%1struct %Pstate* l = (struct %Pstate *)left;\n"
"%1struct %Pstate* r = (struct %Pstate *)right;\n"
"\n"
"%1assert(sizeof (STATE_TYPE) >= sizeof (void *));\n%1");
print("%1p = malloc(sizeof *p);\n"
"%1p->op = op;\n"
"%1p->left = l;\n"
"%1p->right = r;\n"
"%1p->rule.%P%S = 0;\n",
start);
for (i = 1; i <= ntnumber; i++)
print("%1p->cost[%d] =\n", i);
print("%2%d;\n"
"%1switch (op) {\n", maxcost);
for (p = terms; p; p = p->link)
emitcase(p, ntnumber);
print("%1default:\n"
"%2%Ppanic_cannot_match(node);\n"
"%1}\n"
"%1return (STATE_TYPE)p;\n}\n\n");
}
/* emitstring - emit array of rules and costs */
static void emitstring(Rule rules)
{
Rule r;
int k;
print("static const short %Pcost[][4] = {\n");
for (k = 0, r = rules; r; r = r->link)
{
for (; k < r->ern; k++)
print("%1{ 0 },%1/* %d */\n", k);
print("%1{ %d },%1/* %d = %R */\n", r->cost, k++, r);
}
print("};\n\n");
}
/* emitstruct - emit the definition of the state structure */
static void emitstruct(Nonterm nts, int ntnumber)
{
print("struct %Pstate {\n%1int op;\n%1struct %Pstate *left, *right;\n"
"%1short cost[%d];\n%1struct {\n",
ntnumber + 1);
for (; nts; nts = nts->link)
{
int n = 1, m = nts->lhscount;
while (m >>= 1)
n++;
print("%2unsigned %P%S:%d;\n", nts, n);
}
print("%1} rule;\n};\n\n");
}
/* emitterms - emit terminal data structures */
static void emitterms(Term terms)
{
Term p;
int k;
print("enum {\n");
for (k = 0, p = terms; p; p = p->link)
print("%1%S = %d,\n", p, p->esn);
print("};\n\n");
print("static const char %Parity[] = {\n");
for (k = 0, p = terms; p; p = p->link)
{
for (; k < p->esn; k++)
print("%10,%1/* %d */\n", k);
print("%1%d,%1/* %d=%S */\n", p->arity < 0 ? 0 : p->arity, k++, p);
}
print("};\n\n");
print("static const char *%Popname[] = {\n");
for (k = 0, p = terms; p; p = p->link)
{
for (; k < p->esn; k++)
print("%1/* %d */%10,\n", k);
print("%1/* %d */%1\"%S\",\n", k++, p);
}
print("};\n\n");
}
/* emittest - emit clause for testing a match */
static void emittest(Tree t, const char* v, const char* suffix)
{
Term p = t->op;
if (p->kind == TERM)
{
print("%3%s->op == %d%s/* %S */\n", v, p->esn,
t->nterms > 1 ? " && " : suffix, p);
if (t->left)
emittest(t->left, aprintf("%s->left", v),
t->right && t->right->nterms ? " && " : suffix);
if (t->right)
emittest(t->right, aprintf("%s->right", v), suffix);
}
}