697 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			697 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | 
						|
 * See the copyright notice in the ACK home directory, in the file "Copyright".
 | 
						|
 *
 | 
						|
 * Author: Ceriel J.H. Jacobs
 | 
						|
 */
 | 
						|
 | 
						|
/* C O N S T A N T   E X P R E S S I O N   H A N D L I N G */
 | 
						|
 | 
						|
/* $Header$ */
 | 
						|
 | 
						|
#include	"debug.h"
 | 
						|
#include	"target_sizes.h"
 | 
						|
#include	"uns_arith.h"
 | 
						|
 | 
						|
#include	<em_arith.h>
 | 
						|
#include	<em_label.h>
 | 
						|
#include	<assert.h>
 | 
						|
#include	<alloc.h>
 | 
						|
 | 
						|
#include	"idf.h"
 | 
						|
#include	"type.h"
 | 
						|
#include	"LLlex.h"
 | 
						|
#include	"node.h"
 | 
						|
#include	"Lpars.h"
 | 
						|
#include	"standards.h"
 | 
						|
#include	"warning.h"
 | 
						|
 | 
						|
extern char	*symbol2str();
 | 
						|
 | 
						|
#define arith_sign	((arith) (1L << (sizeof(arith) * 8 - 1)))
 | 
						|
 | 
						|
#ifndef NOCROSS
 | 
						|
arith full_mask[MAXSIZE+1];/* full_mask[1] == 0xFF, full_mask[2] == 0xFFFF, .. */
 | 
						|
arith max_int[MAXSIZE+1]; /* max_int[1] == 0x7F, max_int[2] == 0x7FFF, .. */
 | 
						|
arith min_int[MAXSIZE+1]; /* min_int[1] == 0xFFFFFF80, min_int[2] = 0xFFFF8000,
 | 
						|
			     ...
 | 
						|
			  */
 | 
						|
unsigned int wrd_bits;	/* number of bits in a word */
 | 
						|
#else
 | 
						|
arith full_mask[] = { 0L, 0xFFL, 0xFFFFL, 0L, 0xFFFFFFFFL };
 | 
						|
arith max_int[] =   { 0L, 0x7FL, 0x7FFFL, 0L, 0x7FFFFFFFL };
 | 
						|
arith min_int[] =   { 0L, -128L, -32768L, 0L, -2147483647L-1 };
 | 
						|
#endif
 | 
						|
 | 
						|
extern char options[];
 | 
						|
 | 
						|
overflow(expp)
 | 
						|
	t_node *expp;
 | 
						|
{
 | 
						|
	if (expp->nd_type != address_type) {
 | 
						|
	    node_warning(expp, W_ORDINARY, "overflow in constant expression");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
STATIC
 | 
						|
commonbin(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	t_type *tp = exp->nd_type;
 | 
						|
	register t_node *right = exp->nd_RIGHT;
 | 
						|
	
 | 
						|
	exp->nd_RIGHT = 0;
 | 
						|
	FreeNode(exp);
 | 
						|
	*expp = right;
 | 
						|
	right->nd_type = tp;
 | 
						|
}
 | 
						|
 | 
						|
cstunary(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	/*	The unary operation in "expp" is performed on the constant
 | 
						|
		expression below it, and the result restored in expp.
 | 
						|
	*/
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	register t_node *right = exp->nd_RIGHT;
 | 
						|
	register arith o1 = right->nd_INT;
 | 
						|
 | 
						|
	switch(exp->nd_symb) {
 | 
						|
	/* Should not get here
 | 
						|
	case '+':
 | 
						|
		break;
 | 
						|
	*/
 | 
						|
 | 
						|
	case '-':
 | 
						|
		if (! options['s'] &&
 | 
						|
		    o1 == min_int[(int)(right->nd_type->tp_size)]) {
 | 
						|
			overflow(exp);
 | 
						|
		}
 | 
						|
		o1 = -o1;
 | 
						|
		break;
 | 
						|
 | 
						|
	case NOT:
 | 
						|
	case '~':
 | 
						|
		o1 = !o1;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		crash("(cstunary)");
 | 
						|
	}
 | 
						|
 | 
						|
	commonbin(expp);
 | 
						|
	(*expp)->nd_INT = o1;
 | 
						|
	CutSize(*expp);
 | 
						|
}
 | 
						|
 | 
						|
STATIC
 | 
						|
divide(pdiv, prem)
 | 
						|
	arith *pdiv, *prem;
 | 
						|
{
 | 
						|
	/*	Unsigned divide *pdiv by *prem, and store result in *pdiv,
 | 
						|
		remainder in *prem
 | 
						|
	*/
 | 
						|
	register arith o1 = *pdiv;
 | 
						|
	register arith o2 = *prem;
 | 
						|
 | 
						|
#ifndef UNSIGNED_ARITH
 | 
						|
	/*	this is more of a problem than you might
 | 
						|
		think on C compilers which do not have
 | 
						|
		unsigned long.
 | 
						|
	*/
 | 
						|
	if (o2 & arith_sign)	{/* o2 > max_arith */
 | 
						|
		if (! (o1 >= 0 || o1 < o2)) {
 | 
						|
			/*	this is the unsigned test
 | 
						|
				o1 < o2 for o2 > max_arith
 | 
						|
			*/
 | 
						|
			*prem = o2 - o1;
 | 
						|
			*pdiv = 1;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			*pdiv = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else	{		/* o2 <= max_arith */
 | 
						|
		arith half, bit, hdiv, hrem, rem;
 | 
						|
 | 
						|
		half = (o1 >> 1) & ~arith_sign;
 | 
						|
		bit = o1 & 01;
 | 
						|
		/*	now o1 == 2 * half + bit
 | 
						|
			and half <= max_arith
 | 
						|
			and bit <= max_arith
 | 
						|
		*/
 | 
						|
		hdiv = half / o2;
 | 
						|
		hrem = half % o2;
 | 
						|
		rem = 2 * hrem + bit;
 | 
						|
		*pdiv = 2*hdiv;
 | 
						|
		*prem = rem;
 | 
						|
		if (rem < 0 || rem >= o2) {
 | 
						|
			/*	that is the unsigned compare
 | 
						|
				rem >= o2 for o2 <= max_arith
 | 
						|
			*/
 | 
						|
			*pdiv += 1;
 | 
						|
			*prem -= o2;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#else
 | 
						|
	*pdiv = (UNSIGNED_ARITH) o1 / (UNSIGNED_ARITH) o2;
 | 
						|
	*prem = (UNSIGNED_ARITH) o1 % (UNSIGNED_ARITH) o2;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
cstibin(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	/*	The binary operation in "expp" is performed on the constant
 | 
						|
		expressions below it, and the result restored in expp.
 | 
						|
		This version is for INTEGER expressions.
 | 
						|
	*/
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	register arith o1 = exp->nd_LEFT->nd_INT;
 | 
						|
	register arith o2 = exp->nd_RIGHT->nd_INT;
 | 
						|
	register int sz = exp->nd_type->tp_size;
 | 
						|
 | 
						|
	assert(exp->nd_class == Oper);
 | 
						|
	assert(exp->nd_LEFT->nd_class == Value);
 | 
						|
	assert(exp->nd_RIGHT->nd_class == Value);
 | 
						|
 | 
						|
	switch (exp->nd_symb)	{
 | 
						|
	case '*':
 | 
						|
		if (o1 > 0) {
 | 
						|
			if (o2 > 0) {
 | 
						|
				if (max_int[sz] / o1 < o2) overflow(exp);
 | 
						|
			}
 | 
						|
			else if (min_int[sz] / o1 > o2) overflow(exp);
 | 
						|
		}
 | 
						|
		else if (o1 < 0) {
 | 
						|
			if (o2 < 0) {
 | 
						|
				if (o1 == min_int[sz] || o2 == min_int[sz] ||
 | 
						|
			 	   max_int[sz] / (-o1) < (-o2)) overflow(exp);
 | 
						|
			}
 | 
						|
			else if (o2 > 0) {
 | 
						|
				if (min_int[sz] / o2 > o1) overflow(exp);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		o1 *= o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case DIV:
 | 
						|
	case MOD:
 | 
						|
		if (o2 == 0)	{
 | 
						|
			node_error(exp, exp->nd_symb == DIV ?
 | 
						|
					"division by 0" :
 | 
						|
					"modulo by 0");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		if ((o1 < 0) != (o2 < 0)) {
 | 
						|
			if (o1 < 0) o1 = -o1;
 | 
						|
			else o2 = -o2;
 | 
						|
			if (exp->nd_symb == DIV) o1 = -((o1+o2-1)/o2);
 | 
						|
			else o1 = ((o1+o2-1)/o2) * o2 - o1;
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			if (exp->nd_symb == DIV) o1 /= o2;
 | 
						|
			else o1 %= o2;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	case '+':
 | 
						|
		if (  (o1 > 0 && o2 > 0 && max_int[sz] - o1 < o2)
 | 
						|
		   || (o1 < 0 && o2 < 0 && min_int[sz] - o1 > o2)
 | 
						|
		   ) overflow(exp);
 | 
						|
		o1 += o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case '-':
 | 
						|
		if (  (o1 >= 0 && o2 < 0 && max_int[sz] + o2 < o1)
 | 
						|
		   || (o1 < 0 && o2 >= 0 && min_int[sz] + o2 > o1)
 | 
						|
		   ) overflow(exp);
 | 
						|
		o1 -= o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case '<':
 | 
						|
		o1 = (o1 < o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '>':
 | 
						|
		o1 = (o1 > o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case LESSEQUAL:
 | 
						|
		o1 = (o1 <= o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case GREATEREQUAL:
 | 
						|
		o1 = (o1 >= o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '=':
 | 
						|
		o1 = (o1 == o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '#':
 | 
						|
		o1 = (o1 != o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		crash("(cstibin)");
 | 
						|
	}
 | 
						|
 | 
						|
	commonbin(expp);
 | 
						|
	(*expp)->nd_INT = o1;
 | 
						|
	CutSize(*expp);
 | 
						|
}
 | 
						|
 | 
						|
cstfbin(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	/*	The binary operation in "expp" is performed on the constant
 | 
						|
		expressions below it, and the result restored in expp.
 | 
						|
		This version is for REAL expressions.
 | 
						|
	*/
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	register struct real *p = exp->nd_LEFT->nd_REAL;
 | 
						|
	register flt_arith *o1 = &p->r_val;
 | 
						|
	register flt_arith *o2 = &exp->nd_RIGHT->nd_RVAL;
 | 
						|
	int compar = 0;
 | 
						|
	int cmpval = 0;
 | 
						|
 | 
						|
	assert(exp->nd_class == Oper);
 | 
						|
	assert(exp->nd_LEFT->nd_class == Value);
 | 
						|
	assert(exp->nd_RIGHT->nd_class == Value);
 | 
						|
 | 
						|
	switch (exp->nd_symb)	{
 | 
						|
	case '*':
 | 
						|
		flt_mul(o1, o2, o1);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '/':
 | 
						|
		flt_div(o1, o2, o1);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '+':
 | 
						|
		flt_add(o1, o2, o1);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '-':
 | 
						|
		flt_sub(o1, o2, o1);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '<':
 | 
						|
	case '>':
 | 
						|
	case LESSEQUAL:
 | 
						|
	case GREATEREQUAL:
 | 
						|
	case '=':
 | 
						|
	case '#':
 | 
						|
		compar++;
 | 
						|
		cmpval = flt_cmp(o1, o2);
 | 
						|
		switch(exp->nd_symb) {
 | 
						|
		case '<':		cmpval = (cmpval < 0); break;
 | 
						|
		case '>':		cmpval = (cmpval > 0); break;
 | 
						|
		case LESSEQUAL:		cmpval = (cmpval <= 0); break;
 | 
						|
		case GREATEREQUAL:	cmpval = (cmpval >= 0); break;
 | 
						|
		case '=':		cmpval = (cmpval == 0); break;
 | 
						|
		case '#':		cmpval = (cmpval != 0); break;
 | 
						|
		}
 | 
						|
		if (exp->nd_RIGHT->nd_RSTR) free(exp->nd_RIGHT->nd_RSTR);
 | 
						|
		free_real(exp->nd_RIGHT->nd_REAL);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		crash("(cstfbin)");
 | 
						|
	}
 | 
						|
 | 
						|
	switch(flt_status) {
 | 
						|
	case FLT_OVFL:
 | 
						|
		node_warning(exp, "floating point overflow on %s", 
 | 
						|
				symbol2str(exp->nd_symb));
 | 
						|
		break;
 | 
						|
	case FLT_DIV0:
 | 
						|
		node_error(exp, "division by 0.0");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p->r_real) {
 | 
						|
		free(p->r_real);
 | 
						|
		p->r_real = 0;
 | 
						|
	}
 | 
						|
	if (compar) {
 | 
						|
		free_real(p);
 | 
						|
	}
 | 
						|
	commonbin(expp);
 | 
						|
	exp = *expp;
 | 
						|
	if (compar) {
 | 
						|
		exp->nd_symb = INTEGER;
 | 
						|
		exp->nd_INT = cmpval;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		exp->nd_REAL = p;
 | 
						|
	}
 | 
						|
	CutSize(exp);
 | 
						|
}
 | 
						|
 | 
						|
cstubin(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	/*	The binary operation in "expp" is performed on the constant
 | 
						|
		expressions below it, and the result restored in
 | 
						|
		expp.
 | 
						|
	*/
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	arith o1 = exp->nd_LEFT->nd_INT;
 | 
						|
	arith o2 = exp->nd_RIGHT->nd_INT;
 | 
						|
	register int sz = exp->nd_type->tp_size;
 | 
						|
	arith tmp1, tmp2;
 | 
						|
 | 
						|
	assert(exp->nd_class == Oper);
 | 
						|
	assert(exp->nd_LEFT->nd_class == Value);
 | 
						|
	assert(exp->nd_RIGHT->nd_class == Value);
 | 
						|
 | 
						|
	switch (exp->nd_symb)	{
 | 
						|
	case '*':
 | 
						|
		if (o1 == 0 || o2 == 0) {
 | 
						|
			o1 = 0;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		tmp1 = full_mask[sz];
 | 
						|
		tmp2 = o2;
 | 
						|
		divide(&tmp1, &tmp2);
 | 
						|
		if (! chk_bounds(o1, tmp1, T_CARDINAL)) overflow(exp);
 | 
						|
		o1 *= o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case DIV:
 | 
						|
	case MOD:
 | 
						|
		if (o2 == 0)	{
 | 
						|
			node_error(exp, exp->nd_symb == DIV ? 
 | 
						|
					"division by 0" :
 | 
						|
					"modulo by 0");
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		divide(&o1, &o2);
 | 
						|
		if (exp->nd_symb == MOD) o1 = o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case '+':
 | 
						|
		if (! chk_bounds(o2, full_mask[sz] - o1, T_CARDINAL)) {
 | 
						|
			overflow(exp);
 | 
						|
		}
 | 
						|
		o1 += o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case '-':
 | 
						|
		if (  exp->nd_type != address_type
 | 
						|
		   && !chk_bounds(o2, o1, T_CARDINAL)
 | 
						|
		   && (  exp->nd_type->tp_fund != T_INTORCARD
 | 
						|
	 	      || ( exp->nd_type = int_type
 | 
						|
			 , !chk_bounds(min_int[sz], o1 - o2, T_CARDINAL) ) )
 | 
						|
		   ) {
 | 
						|
			node_warning(exp, W_ORDINARY,
 | 
						|
				"underflow in constant expression");
 | 
						|
		}
 | 
						|
		o1 -= o2;
 | 
						|
		break;
 | 
						|
 | 
						|
	case '<':
 | 
						|
		o1 = ! chk_bounds(o2, o1, T_CARDINAL);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '>':
 | 
						|
		o1 = ! chk_bounds(o1, o2, T_CARDINAL);
 | 
						|
		break;
 | 
						|
 | 
						|
	case LESSEQUAL:
 | 
						|
		o1 = chk_bounds(o1, o2, T_CARDINAL);
 | 
						|
		break;
 | 
						|
 | 
						|
	case GREATEREQUAL:
 | 
						|
		o1 = chk_bounds(o2, o1, T_CARDINAL);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '=':
 | 
						|
		o1 = (o1 == o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case '#':
 | 
						|
		o1 = (o1 != o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case AND:
 | 
						|
	case '&':
 | 
						|
		o1 = (o1 && o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	case OR:
 | 
						|
		o1 = (o1 || o2);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		crash("(cstubin)");
 | 
						|
	}
 | 
						|
 | 
						|
	commonbin(expp);
 | 
						|
	exp = *expp;
 | 
						|
	exp->nd_INT = o1;
 | 
						|
	if (exp->nd_type == bool_type) exp->nd_symb = INTEGER;
 | 
						|
	CutSize(exp);
 | 
						|
}
 | 
						|
 | 
						|
cstset(expp)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	extern arith *MkSet();
 | 
						|
	register t_node *exp = *expp;
 | 
						|
	register arith *set1, *set2, *set3;
 | 
						|
	register unsigned int setsize;
 | 
						|
	register int j;
 | 
						|
 | 
						|
	assert(exp->nd_RIGHT->nd_class == Set);
 | 
						|
	assert(exp->nd_symb == IN || exp->nd_LEFT->nd_class == Set);
 | 
						|
 | 
						|
	set2 = exp->nd_RIGHT->nd_set;
 | 
						|
	setsize = (unsigned) (exp->nd_RIGHT->nd_type->tp_size) / (unsigned) word_size;
 | 
						|
 | 
						|
	if (exp->nd_symb == IN) {
 | 
						|
		/*	The setsize must fit in an unsigned, as it is
 | 
						|
			allocated with Malloc, so we can do the arithmetic
 | 
						|
			in an unsigned too.
 | 
						|
		*/
 | 
						|
		unsigned i;
 | 
						|
 | 
						|
		assert(exp->nd_LEFT->nd_class == Value);
 | 
						|
 | 
						|
		exp->nd_LEFT->nd_INT -= exp->nd_RIGHT->nd_type->set_low;
 | 
						|
		exp = exp->nd_LEFT;
 | 
						|
		i = exp->nd_INT;
 | 
						|
		/*	Careful here; use exp->nd_LEFT->nd_INT to see if
 | 
						|
			it falls in the range of the set. Do not use i
 | 
						|
			for this, as i may be truncated.
 | 
						|
		*/
 | 
						|
		i = (exp->nd_INT >= 0 &&
 | 
						|
		     exp->nd_INT < setsize * wrd_bits &&
 | 
						|
		    (set2[i / wrd_bits] & (1 << (i % wrd_bits))));
 | 
						|
		FreeSet(set2);
 | 
						|
		exp = getnode(Value);
 | 
						|
		exp->nd_symb = INTEGER;
 | 
						|
		exp->nd_lineno = (*expp)->nd_lineno;
 | 
						|
		exp->nd_INT = i;
 | 
						|
		exp->nd_type = bool_type;
 | 
						|
		FreeNode(*expp);
 | 
						|
		*expp = exp;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	set1 = exp->nd_LEFT->nd_set;
 | 
						|
	*expp = getnode(Set);
 | 
						|
	(*expp)->nd_type = exp->nd_type;
 | 
						|
	(*expp)->nd_lineno = exp->nd_lineno;
 | 
						|
	switch(exp->nd_symb) {
 | 
						|
	case '+': /* Set union */
 | 
						|
	case '-': /* Set difference */
 | 
						|
	case '*': /* Set intersection */
 | 
						|
	case '/': /* Symmetric set difference */
 | 
						|
		(*expp)->nd_set = set3 = MkSet(exp->nd_type->set_sz);
 | 
						|
		for (j = 0; j < setsize; j++) {
 | 
						|
			switch(exp->nd_symb) {
 | 
						|
			case '+':
 | 
						|
				*set3++ = *set1++ | *set2++;
 | 
						|
				break;
 | 
						|
			case '-':
 | 
						|
				*set3++ = *set1++ & ~*set2++;
 | 
						|
				break;
 | 
						|
			case '*':
 | 
						|
				*set3++ = *set1++ & *set2++;
 | 
						|
				break;
 | 
						|
			case '/':
 | 
						|
				*set3++ = *set1++ ^ *set2++;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	case GREATEREQUAL:
 | 
						|
	case LESSEQUAL:
 | 
						|
	case '=':
 | 
						|
	case '#':
 | 
						|
		/* Constant set comparisons
 | 
						|
		*/
 | 
						|
		for (j = 0; j < setsize; j++) {
 | 
						|
			switch(exp->nd_symb) {
 | 
						|
			case GREATEREQUAL:
 | 
						|
				if ((*set1 | *set2++) != *set1) break;
 | 
						|
				set1++;
 | 
						|
				continue;
 | 
						|
			case LESSEQUAL:
 | 
						|
				if ((*set2 | *set1++) != *set2) break;
 | 
						|
				set2++;
 | 
						|
				continue;
 | 
						|
			case '=':
 | 
						|
			case '#':
 | 
						|
				if (*set1++ != *set2++) break;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		if (j < setsize) {
 | 
						|
			j = exp->nd_symb == '#';
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			j = exp->nd_symb != '#';
 | 
						|
		}
 | 
						|
		*expp = getnode(Value);
 | 
						|
		(*expp)->nd_symb = INTEGER;
 | 
						|
		(*expp)->nd_INT = j;
 | 
						|
		(*expp)->nd_type = bool_type;
 | 
						|
		(*expp)->nd_lineno = (*expp)->nd_lineno;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		crash("(cstset)");
 | 
						|
	}
 | 
						|
	FreeSet(exp->nd_LEFT->nd_set);
 | 
						|
	FreeSet(exp->nd_RIGHT->nd_set);
 | 
						|
	FreeNode(exp);
 | 
						|
}
 | 
						|
 | 
						|
cstcall(expp, call)
 | 
						|
	t_node **expp;
 | 
						|
{
 | 
						|
	/*	a standard procedure call is found that can be evaluated
 | 
						|
		compile time, so do so.
 | 
						|
	*/
 | 
						|
	register t_node *expr;
 | 
						|
	register t_type *tp;
 | 
						|
 | 
						|
	assert((*expp)->nd_class == Call);
 | 
						|
	expr = (*expp)->nd_RIGHT->nd_LEFT;
 | 
						|
	tp = expr->nd_type;
 | 
						|
	expr->nd_type = (*expp)->nd_type;
 | 
						|
 | 
						|
	(*expp)->nd_RIGHT->nd_LEFT = 0;
 | 
						|
	FreeNode(*expp);
 | 
						|
	*expp = expr;
 | 
						|
	expr->nd_symb = INTEGER;
 | 
						|
	expr->nd_class = Value;
 | 
						|
	switch(call) {
 | 
						|
	case S_ABS:
 | 
						|
		if (expr->nd_INT < 0) {
 | 
						|
			if (! options['s'] &&
 | 
						|
			    expr->nd_INT <= min_int[(int)(tp->tp_size)]) {
 | 
						|
				overflow(expr);
 | 
						|
			}
 | 
						|
			expr->nd_INT = - expr->nd_INT;
 | 
						|
		}
 | 
						|
		CutSize(expr);
 | 
						|
		break;
 | 
						|
 | 
						|
	case S_CAP:
 | 
						|
		if (expr->nd_INT >= 'a' && expr->nd_INT <= 'z') {
 | 
						|
			expr->nd_INT += ('A' - 'a');
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	case S_HIGH:
 | 
						|
	case S_MAX:
 | 
						|
		if (tp->tp_fund == T_INTEGER) {
 | 
						|
			expr->nd_INT = max_int[(int)(tp->tp_size)];
 | 
						|
		}
 | 
						|
		else if (tp == card_type) {
 | 
						|
			expr->nd_INT = full_mask[(int)(int_size)];
 | 
						|
		}
 | 
						|
		else if (tp->tp_fund == T_SUBRANGE) {
 | 
						|
			expr->nd_INT = tp->sub_ub;
 | 
						|
		}
 | 
						|
		else	expr->nd_INT = tp->enm_ncst - 1;
 | 
						|
		break;
 | 
						|
 | 
						|
	case S_MIN:
 | 
						|
		if (tp->tp_fund == T_INTEGER) {
 | 
						|
			expr->nd_INT = min_int[(int)(tp->tp_size)];
 | 
						|
		}
 | 
						|
		else if (tp->tp_fund == T_SUBRANGE) {
 | 
						|
			expr->nd_INT = tp->sub_lb;
 | 
						|
		}
 | 
						|
		else	expr->nd_INT = 0;
 | 
						|
		break;
 | 
						|
 | 
						|
	case S_ODD:
 | 
						|
		expr->nd_INT &= 1;
 | 
						|
		break;
 | 
						|
 | 
						|
	case S_TSIZE:
 | 
						|
	case S_SIZE:
 | 
						|
		expr->nd_INT = tp->tp_size;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		crash("(cstcall)");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
CutSize(expr)
 | 
						|
	register t_node *expr;
 | 
						|
{
 | 
						|
	/*	The constant value of the expression expr is made to
 | 
						|
		conform to the size of the type of the expression.
 | 
						|
	*/
 | 
						|
	register t_type *tp = BaseType(expr->nd_type);
 | 
						|
 | 
						|
	assert(expr->nd_class == Value);
 | 
						|
	if (tp->tp_fund == T_REAL) return;
 | 
						|
	if (tp->tp_fund != T_INTEGER) {
 | 
						|
		expr->nd_INT &= full_mask[(int)(tp->tp_size)];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		int nbits = (int) (sizeof(arith) - tp->tp_size) * 8;
 | 
						|
 | 
						|
		expr->nd_INT = (expr->nd_INT << nbits) >> nbits;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
InitCst()
 | 
						|
{
 | 
						|
	register int i = 0;
 | 
						|
#ifndef NOCROSS
 | 
						|
	register arith bt = (arith)0;
 | 
						|
 | 
						|
	while (!(bt < 0))	{
 | 
						|
		i++;
 | 
						|
		bt = (bt << 8) + 0377;
 | 
						|
		if (i == MAXSIZE+1)
 | 
						|
			fatal("array full_mask too small for this machine");
 | 
						|
		full_mask[i] = bt;
 | 
						|
		max_int[i] = bt & ~(1L << ((8 * i) - 1));
 | 
						|
		min_int[i] = - max_int[i];
 | 
						|
		if (! options['s']) min_int[i]--;
 | 
						|
	}
 | 
						|
	if ((int)long_size > sizeof(arith)) {
 | 
						|
		fatal("sizeof (arith) insufficient on this machine");
 | 
						|
	}
 | 
						|
 | 
						|
	wrd_bits = 8 * (int) word_size;
 | 
						|
#else
 | 
						|
	if (options['s']) {
 | 
						|
		for (i = 0; i < sizeof(long); i++) min_int[i] = - max_int[i];
 | 
						|
	}
 | 
						|
#endif
 | 
						|
}
 |