73 lines
		
	
	
	
		
			1.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
	
		
			1.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|  * See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
|  *
 | |
|  * Author: Ceriel J.H. Jacobs
 | |
|  */
 | |
| 
 | |
| /* $Header$ */
 | |
| 
 | |
| #include <math.h>
 | |
| #include <errno.h>
 | |
| 
 | |
| extern int	errno;
 | |
| extern double	modf();
 | |
| 
 | |
| double
 | |
| tan(x)
 | |
| 	double x;
 | |
| {
 | |
| 	/*	Algorithm and coefficients from:
 | |
| 			"Software manual for the elementary functions"
 | |
| 			by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
| 	*/
 | |
| 
 | |
| 	int negative = x < 0;
 | |
| 	int invert = 0;
 | |
| 	double	y;
 | |
| 	static double	p[] = {
 | |
| 		 1.0,
 | |
| 		-0.13338350006421960681e+0,
 | |
| 		 0.34248878235890589960e-2,
 | |
| 		-0.17861707342254426711e-4
 | |
| 	};
 | |
| 	static double	q[] = {
 | |
| 		 1.0,
 | |
| 		-0.46671683339755294240e+0,
 | |
| 		 0.25663832289440112864e-1,
 | |
| 		-0.31181531907010027307e-3,
 | |
| 		 0.49819433993786512270e-6
 | |
| 	};
 | |
| 
 | |
| 	if (negative) x = -x;
 | |
| 
 | |
| 	/* ??? avoid loss of significance, error if x is too large ??? */
 | |
| 
 | |
| 	y = x * M_2_PI + 0.5;
 | |
| 
 | |
| 	/*	Use extended precision to calculate reduced argument.
 | |
| 		Here we used 12 bits of the mantissa for a1.
 | |
| 		Also split x in integer part x1 and fraction part x2.
 | |
| 	*/
 | |
| #define A1 1.57080078125
 | |
| #define A2 -4.454455103380768678308e-6
 | |
| 	{
 | |
| 		double x1, x2;
 | |
| 
 | |
| 		modf(y, &y);
 | |
| 		if (modf(0.5*y, &x1)) invert = 1;
 | |
| 		x2 = modf(x, &x1);
 | |
| 		x = x1 - y * A1;
 | |
| 		x += x2;
 | |
| 		x -= y * A2;
 | |
| #undef A1
 | |
| #undef A2
 | |
| 	}
 | |
| 
 | |
| 	/* ??? avoid underflow ??? */
 | |
| 	y = x * x;
 | |
| 	x += x * y * POLYNOM2(y, p+1);
 | |
| 	y = POLYNOM4(y, q);
 | |
| 	if (negative) x = -x;
 | |
| 	return invert ? -y/x : x/y;
 | |
| }
 |