799900f45a
latest version of musashi engine includes floating point emulation (plus a few patches to add in missing opcodes needed by ack - see tags JFF & TBB) added a few missing linux syscalls in sim.c pascal now runs pretty well quick test with modula2 passes c gets the floating point numbers wrong, so more work needed here other languages untested plat/linux68k/emu/build.lua is probably not quite right - the softfloat directory is compiled in the wrong place
291 lines
15 KiB
Plaintext
Executable file
291 lines
15 KiB
Plaintext
Executable file
EXAMPLE:
|
|
-------
|
|
As an example, I'll build an imaginary hardware platform.
|
|
|
|
|
|
The system is fairly simple, comprising a 68000, an input device, an output
|
|
device, a non-maskable-interrupt device, and an interrupt controller.
|
|
|
|
|
|
The input device receives input from the user and asserts its interrupt
|
|
request line until its value is read. Reading from the input device's
|
|
memory-mapped port will both clear its interrupt request and read an ASCII
|
|
representation (8 bits) of what the user entered.
|
|
|
|
The output device reads value when it is selected through its memory-mapped
|
|
port and outputs it to a display. The value it reads will be interpreted as
|
|
an ASCII value and output to the display. The output device is fairly slow
|
|
(it can only process 1 byte per second), and so it asserts its interrupt
|
|
request line when it is ready to receive a byte. Writing to the output device
|
|
sends a byte to it. If the output device is not ready, the write is ignored.
|
|
Reading from the output device returns 0 and clears its interrupt request line
|
|
until another byte is written to it and 1 second elapses.
|
|
|
|
The non-maskable-interrupt (NMI) device, as can be surmised from the name,
|
|
generates a non-maskable-interrupt. This is connected to some kind of external
|
|
switch that the user can push to generate a NMI.
|
|
|
|
Since there are 3 devices interrupting the CPU, an interrupt controller is
|
|
needed. The interrupt controller takes 7 inputs and encodes the highest
|
|
priority asserted line on the 3 output pins. the input device is wired to IN2
|
|
and the output device is wired to IN1 on the controller. The NMI device is
|
|
wired to IN7 and all the other inputs are wired low.
|
|
|
|
The bus is also connected to a 1K ROM and a 256 byte RAM.
|
|
Beware: This platform places ROM and RAM in the same address range and uses
|
|
the FC pins to select the correct address space!
|
|
(You didn't expect me to make it easy, did you? =)
|
|
|
|
|
|
|
|
Here is the schematic in all its ASCII splendour:
|
|
-------------------------------------------------
|
|
|
|
NMI TIED
|
|
SWITCH LOW
|
|
| |
|
|
| +-+-+-+
|
|
| | | | | +------------------------------------------------+
|
|
| | | | | | +------------------------------------+ |
|
|
| | | | | | | | |
|
|
+-------------+ | |
|
|
|7 6 5 4 3 2 1| | |
|
|
| | | |
|
|
| INT CONTRLR | | |
|
|
| | | |
|
|
|i i i | | |
|
|
|2 1 0 | | |
|
|
+-------------+ | |
|
|
| | | | |
|
|
| | | +--------------------------------+--+ | |
|
|
o o o | | | | |
|
|
+--------------+ +-------+ +----------+ +---------+ +----------+
|
|
| I I I a | | | | | | r a i | | i |
|
|
| 2 1 0 23 | | | | | | e c | | |
|
|
| | | | | | | a k | | |
|
|
| | | | | | | d | | |
|
|
| | | | | | | | | |
|
|
| M68000 | | ROM | | RAM | | IN | | OUT |
|
|
| | | | | | | | | |
|
|
| a9|--|a9 |--| |--| |--| |
|
|
| a8|--|a8 |--| |--| |--| |
|
|
| a7|--|a7 |--|a7 |--| |--| |
|
|
| a6|--|a6 |--|a6 |--| |--| |
|
|
| a5|--|a5 |--|a5 |--| |--| |
|
|
| a4|--|a4 |--|a4 |--| |--| |
|
|
| a3|--|a3 |--|a3 |--| |--| |
|
|
| a2|--|a2 |--|a2 |--| |--| |
|
|
| a1|--|a1 |--|a1 |--| |--| |
|
|
| a0|--|a0 |--|a0 |--| |--| |
|
|
| | | | | | | | | |
|
|
| d15|--|d15 |--|d15 |--| |--| |
|
|
| d14|--|d14 |--|d14 |--| |--| |
|
|
| d13|--|d13 |--|d13 |--| |--| |
|
|
| d12|--|d12 |--|d12 |--| |--| |
|
|
| d11|--|d11 |--|d11 |--| |--| |
|
|
| d10|--|d10 |--|d10 |--| |--| |
|
|
| d9|--|d9 |--|d9 |--| |--| |
|
|
| d8|--|d8 |--|d8 |--| |--| |
|
|
| d7|--|d7 |--|d7 |--|d7 |--|d7 |
|
|
| d6|--|d6 |--|d6 |--|d6 |--|d6 |
|
|
| d5|--|d5 |--|d5 |--|d5 |--|d5 |
|
|
| d4|--|d4 |--|d4 |--|d4 |--|d4 |
|
|
| d3|--|d3 |--|d3 |--|d3 |--|d3 |
|
|
| d2|--|d2 |--|d2 |--|d2 |--|d2 |
|
|
| d1|--|d1 |--|d1 |--|d1 |--|d1 w |
|
|
| d0|--|d0 |--|d0 |--|d0 |--|d0 r |
|
|
| | | | | | | | | i a |
|
|
| a F F F | | | | | | | | t c |
|
|
|22 rW 2 1 0 | | cs | | cs rW | | | | e k |
|
|
+--------------+ +-------+ +----------+ +---------+ +----------+
|
|
| | | | | | | | | |
|
|
| | | | | | | | | |
|
|
| | | | | +-------+ +-----+ | +---+ |
|
|
| | | | | | IC1 | | IC2 | | |AND| |
|
|
| | | | | |a b c d| |a b c| | +---+ |
|
|
| | | | | +-------+ +-----+ | | | |
|
|
| | | | | | | | | | | | | | +--+
|
|
| | | | | | | | | | | | | | |
|
|
| | | | | | | | | | | | | | |
|
|
| | | | | | | | | | | | | | |
|
|
| | | | +-----)-)-+-)----)-)-+ | | |
|
|
| | | +-------)-+---)----)-+ | | |
|
|
| | +---------+-----)----+ | | |
|
|
| | | | | |
|
|
| +------------------+-----------+----------------------+ |
|
|
| |
|
|
+-----------------------------------------------------------+
|
|
|
|
IC1: output=1 if a=0 and b=1 and c=0 and d=0
|
|
IC2: output=1 if a=0 and b=0 and c=1
|
|
|
|
|
|
|
|
Here is the listing for program.bin:
|
|
-----------------------------------
|
|
|
|
INPUT_ADDRESS equ $800000
|
|
OUTPUT_ADDRESS equ $400000
|
|
CIRCULAR_BUFFER equ $c0
|
|
CAN_OUTPUT equ $d0
|
|
STACK_AREA equ $100
|
|
|
|
vector_table:
|
|
00000000 0000 0100 dc.l STACK_AREA * 0: SP
|
|
00000004 0000 00c0 dc.l init * 1: PC
|
|
00000008 0000 0148 dc.l unhandled_exception * 2: bus error
|
|
0000000c 0000 0148 dc.l unhandled_exception * 3: address error
|
|
00000010 0000 0148 dc.l unhandled_exception * 4: illegal instruction
|
|
00000014 0000 0148 dc.l unhandled_exception * 5: zero divide
|
|
00000018 0000 0148 dc.l unhandled_exception * 6: chk
|
|
0000001c 0000 0148 dc.l unhandled_exception * 7: trapv
|
|
00000020 0000 0148 dc.l unhandled_exception * 8: privilege violation
|
|
00000024 0000 0148 dc.l unhandled_exception * 9: trace
|
|
00000028 0000 0148 dc.l unhandled_exception * 10: 1010
|
|
0000002c 0000 0148 dc.l unhandled_exception * 11: 1111
|
|
00000030 0000 0148 dc.l unhandled_exception * 12: -
|
|
00000034 0000 0148 dc.l unhandled_exception * 13: -
|
|
00000038 0000 0148 dc.l unhandled_exception * 14: -
|
|
0000003c 0000 0148 dc.l unhandled_exception * 15: uninitialized interrupt
|
|
00000040 0000 0148 dc.l unhandled_exception * 16: -
|
|
00000044 0000 0148 dc.l unhandled_exception * 17: -
|
|
00000048 0000 0148 dc.l unhandled_exception * 18: -
|
|
0000004c 0000 0148 dc.l unhandled_exception * 19: -
|
|
00000050 0000 0148 dc.l unhandled_exception * 20: -
|
|
00000054 0000 0148 dc.l unhandled_exception * 21: -
|
|
00000058 0000 0148 dc.l unhandled_exception * 22: -
|
|
0000005c 0000 0148 dc.l unhandled_exception * 23: -
|
|
00000060 0000 0148 dc.l unhandled_exception * 24: spurious interrupt
|
|
00000064 0000 0136 dc.l output_ready * 25: l1 irq
|
|
00000068 0000 010e dc.l input_ready * 26: l2 irq
|
|
0000006c 0000 0148 dc.l unhandled_exception * 27: l3 irq
|
|
00000070 0000 0148 dc.l unhandled_exception * 28: l4 irq
|
|
00000074 0000 0148 dc.l unhandled_exception * 29: l5 irq
|
|
00000078 0000 0148 dc.l unhandled_exception * 30: l6 irq
|
|
0000007c 0000 014e dc.l nmi * 31: l7 irq
|
|
00000080 0000 0148 dc.l unhandled_exception * 32: trap 0
|
|
00000084 0000 0148 dc.l unhandled_exception * 33: trap 1
|
|
00000088 0000 0148 dc.l unhandled_exception * 34: trap 2
|
|
0000008c 0000 0148 dc.l unhandled_exception * 35: trap 3
|
|
00000090 0000 0148 dc.l unhandled_exception * 36: trap 4
|
|
00000094 0000 0148 dc.l unhandled_exception * 37: trap 5
|
|
00000098 0000 0148 dc.l unhandled_exception * 38: trap 6
|
|
0000009c 0000 0148 dc.l unhandled_exception * 39: trap 7
|
|
000000a0 0000 0148 dc.l unhandled_exception * 40: trap 8
|
|
000000a4 0000 0148 dc.l unhandled_exception * 41: trap 9
|
|
000000a8 0000 0148 dc.l unhandled_exception * 42: trap 10
|
|
000000ac 0000 0148 dc.l unhandled_exception * 43: trap 11
|
|
000000b0 0000 0148 dc.l unhandled_exception * 44: trap 12
|
|
000000b4 0000 0148 dc.l unhandled_exception * 45: trap 13
|
|
000000b8 0000 0148 dc.l unhandled_exception * 46: trap 14
|
|
000000bc 0000 0148 dc.l unhandled_exception * 47: trap 15
|
|
* This is the end of the useful part of the table.
|
|
* We will now do the Capcom thing and put code starting at $c0.
|
|
|
|
init:
|
|
* Copy the exception vector table to RAM.
|
|
000000c0 227c 0000 0000 move.l #0, a1 * a1 is RAM index
|
|
000000c6 303c 002f move.w #47, d0 * d0 is counter (48 vectors)
|
|
000000ca 41fa 0006 lea.l (copy_table,PC), a0 * a0 is scratch
|
|
000000ce 2208 move.l a0, d1 * d1 is ROM index
|
|
000000d0 4481 neg.l d1
|
|
copy_table:
|
|
000000d2 22fb 18fe dc.l $22fb18fe * stoopid as68k generates 020 code here
|
|
* move.l (copy_table,PC,d1.l), (a1)+
|
|
000000d6 5841 addq #4, d1
|
|
000000d8 51c8 fff8 dbf d0, copy_table
|
|
|
|
main_init:
|
|
* Initialize main program
|
|
000000dc 11fc 0000 00d0 move.b #0, CAN_OUTPUT
|
|
000000e2 4df8 00c0 lea.l CIRCULAR_BUFFER, a6
|
|
000000e6 7c00 moveq #0, d6 * output buffer ptr
|
|
000000e8 7e00 moveq #0, d7 * input buffer ptr
|
|
000000ea 027c f8ff andi #$f8ff, SR * clear interrupt mask
|
|
main:
|
|
* Main program
|
|
000000ee 4a38 00d0 tst.b CAN_OUTPUT * can we output?
|
|
000000f2 67fa beq main
|
|
000000f4 be06 cmp.b d6, d7 * is there data?
|
|
000000f6 67f6 beq main
|
|
000000f8 11fc 0000 00d0 move.b #0, CAN_OUTPUT
|
|
000000fe 13f6 6000 0040 move.b (0,a6,d6.w), OUTPUT_ADDRESS * write data
|
|
0000
|
|
00000106 5246 addq #1, d6
|
|
00000108 0206 000f andi.b #15, d6 * update circular buffer
|
|
0000010c 60e0 bra main
|
|
|
|
|
|
input_ready:
|
|
0000010e 2f00 move.l d0, -(a7)
|
|
00000110 2f01 move.l d1, -(a7)
|
|
00000112 1239 0080 0000 move.b INPUT_ADDRESS, d1 * read data
|
|
00000118 1007 move.b d7, d0 * check if buffer full
|
|
0000011a 5240 addq #1, d0
|
|
0000011c 0200 000f andi.b #15, d0
|
|
00000120 bc00 cmp.b d0, d6
|
|
00000122 6700 000c beq input_ready_quit * throw away if full
|
|
00000126 1d81 7000 move.b d1, (0,a6,d7.w) * store the data
|
|
0000012a 5247 addq #1, d7
|
|
0000012c 0207 000f andi.b #15, d7 * update circular buffer
|
|
input_ready_quit:
|
|
00000130 221f move.l (a7)+, d1
|
|
00000132 201f move.l (a7)+, d0
|
|
00000134 4e73 rte
|
|
|
|
output_ready:
|
|
00000136 2f00 move.l d0, -(a7)
|
|
00000138 11fc 0001 00d0 move.b #1, CAN_OUTPUT
|
|
0000013e 1039 0040 0000 move.b OUTPUT_ADDRESS, d0 * acknowledge the interrupt
|
|
00000144 201f move.l (a7)+, d0
|
|
00000146 4e73 rte
|
|
|
|
unhandled_exception:
|
|
00000148 4e72 2700 stop #$2700 * wait for NMI
|
|
0000014c 60fa bra unhandled_exception * shouldn't get here
|
|
|
|
nmi:
|
|
* perform a soft reset
|
|
0000014e 46fc 2700 move #$2700, SR * set status register
|
|
00000152 2e7a feac move.l (vector_table,PC), a7 * reset stack pointer
|
|
00000156 4e70 reset * reset peripherals
|
|
00000158 4efa feaa jmp (vector_table+4,PC) * reset program counter
|
|
|
|
END
|
|
|
|
|
|
|
|
Compiling the example host environment:
|
|
--------------------------------------
|
|
|
|
I've only put in an os-dependant portion for dos/windows, so you'll either
|
|
have to compile for that system or make your own osd code based on osd_dos.c
|
|
and modify the makefile accordingly.
|
|
|
|
I compiled this example using the compiler from mingw (www.mingw.org) but you
|
|
could also use djgpp (www.delorie.com).
|
|
|
|
- Copy the m68k files to a directory. Then extract the files from example.zip to
|
|
the same directory, overwriting m68kconf.h. program.bin is the actual 68000
|
|
program you will be running.
|
|
- Make your own osd_get_key() in the same fashion as in osd_dos.c if you're not
|
|
compiling for dos/windows.
|
|
- Type make
|
|
- Perform the necessary animal sacrifices.
|
|
- Type sim program.bin
|
|
|
|
|
|
Keys:
|
|
ESC - quits the simulator
|
|
~ - generates an NMI interrupt
|
|
Any other key - Genearate input for the input device
|
|
|
|
|
|
Note: I've cheated a bit in the emulation. There is no speed control
|
|
to set the speed the CPU runs at; it simply runs as fast as your
|
|
processor can run it.
|
|
To add speed control, you will need a high-precision timestamp
|
|
function (like the RDTSC instruction for newer Pentium CPUs)
|
|
and a bit of arithmetic to make the cycles argument for m68k_execute().
|
|
I'll leave that as an excercise to the reader.
|