355 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			355 lines
		
	
	
	
		
			8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* C R O S S   J U M P I N G
 | |
|  *
 | |
|  * CJ.H 
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "../share/types.h"
 | |
| #include "../share/debug.h"
 | |
| #include "../share/global.h"
 | |
| #include "../share/files.h"
 | |
| #include "../share/get.h"
 | |
| #include "../share/put.h"
 | |
| #include "../share/lset.h"
 | |
| #include "../share/map.h"
 | |
| #include "../share/alloc.h"
 | |
| #include "../share/aux.h"
 | |
| #include "../share/def.h"
 | |
| #include "../share/stack_chg.h"
 | |
| #include "../share/go.h"
 | |
| #include "../../../h/em_mnem.h"
 | |
| #include "../../../h/em_spec.h"
 | |
| 
 | |
| 
 | |
| /* Cross jumping performs optimzations like:
 | |
|  * 
 | |
|  *	 if cond then goto L1;			 if cond then goto L1
 | |
|  *	 S1;			 ----->		 S1;
 | |
|  *	 S2;					 goto L3;
 | |
|  *	 goto L2;				L1:
 | |
|  *	L1:					 S3;
 | |
|  *	 S3;					L3:
 | |
|  *	 S2;					 S2;
 | |
|  *	L2:
 | |
|  *
 | |
|  * CJ looks for two basic blocks b1 and b2 with the following properties:
 | |
|  *  - there exists a basic block S such that SUCC(b1) = SUCC(b2) = {S}
 | |
|  *    (so both have only 1 successor)
 | |
|  *  - the last N (N > 0) instructions of b1 and b2, not counting a possible
 | |
|  *    BRAnch instruction, are the same.
 | |
|  * As a result of the first condition, at least of the two blocks must end
 | |
|  * on an (unconditional) BRAnch instruction. If both end on a BRA, one block
 | |
|  * is chosen at random. Assume this block is b1. A new label L is put just
 | |
|  * before the N common instructions of block b2 (so this block is split
 | |
|  * into two). The BRA of b1 is changed into a BRA L. So dynamically the same
 | |
|  * instructions are executed in a slightly different order; yet the size of
 | |
|  * the code has become smaller.
 | |
|  */
 | |
| 
 | |
| 
 | |
| STATIC int Scj;  /* number of optimizations found */
 | |
| 
 | |
| 
 | |
| 
 | |
| #define DLINK(l1,l2)	l1->l_next=l2; l2->l_prev=l1
 | |
| 
 | |
| 
 | |
| STATIC bool same_instr(l1,l2)
 | |
| 	line_p l1,l2;
 | |
| {
 | |
| 	/* See if l1 and l2 are the same instruction */
 | |
| 
 | |
| 	if (l1 == 0 || l2 == 0 || TYPE(l1) != TYPE(l2)) return FALSE;
 | |
| 	if (INSTR(l1) != INSTR(l2)) return FALSE;
 | |
| 	switch(TYPE(l1)) {
 | |
| 		case OPSHORT: return SHORT(l1) == SHORT(l2);
 | |
| 		case OPOFFSET: return OFFSET(l1) == OFFSET(l2);
 | |
| 		case OPPROC: return PROC(l1) == PROC(l2);
 | |
| 		case OPOBJECT: return OBJ(l1) == OBJ(l2);
 | |
| 		case OPINSTRLAB: return INSTRLAB(l1) == INSTRLAB(l2);
 | |
| 		case OPNO: return TRUE;
 | |
| 		default: return FALSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| STATIC line_p last_mnem(b)
 | |
| 	bblock_p b;
 | |
| {
 | |
| 	/* Determine the last line of a list */
 | |
| 
 | |
| 	register line_p l;
 | |
| 
 | |
| 	for (l = b->b_start; l->l_next != (line_p) 0; l = l->l_next);
 | |
| 	while (l != (line_p) 0 && (INSTR(l) < sp_fmnem || INSTR(l) > sp_lmnem)) {
 | |
| 		l = PREV(l);
 | |
| 	}
 | |
| 	return l;
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC bool is_desirable(text)
 | |
| 	line_p text;
 | |
| {
 | |
| 	/* We avoid to generate a BRAnch in the middle of some expression,
 | |
| 	 * as the code generator will write the contents of the fakestack
 | |
| 	 * to the real stack if it encounters a BRA. We do not avoid to
 | |
| 	 * split the parameter-pushing code of a subroutine call into two,
 | |
| 	 * as the parameters are pushed on the real stack anyway.
 | |
| 	 * So e.g. "LOL a ; LOL b; ADI" will not be split, but
 | |
| 	 * "LOL a; LOL b; CAL f" may be split.
 | |
| 	 */
 | |
| 
 | |
| 	line_p l;
 | |
| 	bool ok;
 | |
| 	int stack_diff,pop,push;
 | |
| 
 | |
| 	stack_diff = 0;
 | |
| 	for (l = text; l != (line_p) 0; l = l->l_next) {
 | |
| 		switch(INSTR(l)) {
 | |
| 			case op_cal:
 | |
| 			case op_asp:
 | |
| 			case op_bra:
 | |
| 				return TRUE;
 | |
| 		}
 | |
| 		line_change(l,&ok,&pop,&push);
 | |
| 		/* printf("instr %d, pop %d, push %d, ok %d\n",INSTR(l),pop,push,ok); */
 | |
| 		if (!ok || (stack_diff -= pop) < 0) {
 | |
| 			return FALSE;
 | |
| 		} else {
 | |
| 			stack_diff += push;
 | |
| 		}
 | |
| 	}
 | |
| 	return TRUE;
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC cp_loops(b1,b2)
 | |
| 	bblock_p b1,b2;
 | |
| {
 | |
| 	/* Copy the loopset of b2 to b1 */
 | |
| 
 | |
| 	Lindex i;
 | |
| 	loop_p lp;
 | |
| 	for (i = Lfirst(b2->b_loops); i != (Lindex) 0;
 | |
| 	     i = Lnext(i,b2->b_loops)) {
 | |
| 		lp = (loop_p) Lelem(i);
 | |
| 		Ladd(lp,&b1->b_loops);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC jump_cross(l1,l2,b1,b2)
 | |
| 	line_p l1,l2;
 | |
| 	bblock_p b1,b2;
 | |
| {
 | |
| 	/* A cross-jump from block b2 to block b1 is found; the code in
 | |
| 	 * block b2 from line l2 up to the BRAnch is removed; block b1 is
 | |
| 	 * split into two; the second part consists of a new label
 | |
| 	 * followed by the code from l1 till the end of the block.
 | |
| 	 */
 | |
| 
 | |
| 	line_p l;
 | |
| 	bblock_p b;
 | |
| 	bblock_p s;
 | |
| 
 | |
| 	/* First adjust the control flow graph */
 | |
| 	b = freshblock();  /* create a new basic block */
 | |
| 	b->b_succ = b1->b_succ;
 | |
| 	/* SUCC(b1) = {b} */
 | |
| 	b1->b_succ = Lempty_set(); Ladd(b,&b1->b_succ);
 | |
| 	/* SUCC(b2) = {b} */
 | |
| 	Ldeleteset(b2->b_succ); b2->b_succ = Lempty_set(); Ladd(b,&b2->b_succ);
 | |
| 	/* PRED(b) = {b1,b2} */
 | |
| 	b->b_pred = Lempty_set(); Ladd(b1,&b->b_pred); Ladd(b2,&b->b_pred);
 | |
| 	/* PRED(SUCC(b)) := PRED(SUCC(b)) - {b1,b2} + {b} */
 | |
| 	assert(Lnrelems(b->b_succ) == 1); 
 | |
| 	s = (bblock_p) Lelem(Lfirst(b->b_succ));
 | |
| 	Lremove(b1,&s->b_pred); Lremove(b2,&s->b_pred); Ladd(b,&s->b_pred);
 | |
| 	cp_loops(b,b1);
 | |
| 	b->b_idom = common_dom(b1,b2);
 | |
| 	b->b_flags = b1->b_flags;
 | |
| 	b->b_next = b1->b_next;
 | |
| 	b1->b_next = b;
 | |
| 
 | |
| 	/* Now adjust the EM text */
 | |
| 	l = PREV(l1);
 | |
| 	if (l == (line_p) 0) {
 | |
| 		b1->b_start = (line_p) 0;
 | |
| 	} else {
 | |
| 		l->l_next = (line_p) 0;
 | |
| 	}
 | |
| 	l = newline(OPINSTRLAB);
 | |
| 	l->l_instr = op_lab;
 | |
| 	INSTRLAB(l) = freshlabel();
 | |
| 	DLINK(l,l1);
 | |
| 	b->b_start = l;
 | |
| 	for (l = l2; INSTR(l) != op_bra; l = l->l_next) {
 | |
| 		assert (l != (line_p) 0);
 | |
| 		rm_line(l,b2);
 | |
| 	}
 | |
| 	INSTRLAB(l) = INSTRLAB(b->b_start);
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC bool try_tail(b1,b2)
 | |
| 	bblock_p b1,b2;
 | |
| {
 | |
| 	/* See if b1 and b2 end on the same sequence of instructions */
 | |
| 
 | |
| 	line_p l1,l2;
 | |
| 	bblock_p b = (bblock_p) 0;
 | |
| 	int cnt = 0;
 | |
| 	/* printf("try block %d and %d\n",b1->b_id,b2->b_id); */
 | |
| 
 | |
| 	if (b1->b_start == (line_p) 0 || b2->b_start == (line_p) 0) return FALSE;
 | |
| 	l1 = last_mnem(b1);
 | |
| 	l2 = last_mnem(b2);
 | |
| 	if (l1 == (line_p) 0 || l2 == (line_p) 0) return FALSE;
 | |
| 	/* printf("consider:\n"); showinstr(l1); showinstr(l2); */
 | |
| 	if (INSTR(l1) == op_bra) {
 | |
| 		b = b1;
 | |
| 		l1 = PREV(l1);
 | |
| 	}
 | |
| 	if (INSTR(l2) == op_bra) {
 | |
| 		b = b2;
 | |
| 		l2 = PREV(l2);
 | |
| 	}
 | |
| 	assert(b != (bblock_p) 0);
 | |
| 	while(same_instr(l1,l2)) {
 | |
| 		cnt++;
 | |
| 		l1 = PREV(l1);
 | |
| 		l2 = PREV(l2);
 | |
| 		/* printf("consider:\n"); showinstr(l1); showinstr(l2); */
 | |
| 	}
 | |
| 	if (cnt >= 1) {
 | |
| 		l1 = (l1 == 0 ? b1->b_start : l1->l_next);
 | |
| 		l2 = (l2 == 0 ? b2->b_start : l2->l_next);
 | |
| 		if (is_desirable(l1)) {
 | |
| 			if (b == b1) {
 | |
| 				jump_cross(l2,l1,b2,b1);
 | |
| 				Scj++;
 | |
| 			} else {
 | |
| 				jump_cross(l1,l2,b1,b2);
 | |
| 				Scj++;
 | |
| 			}
 | |
| 			return TRUE;
 | |
| 		}
 | |
| 	}
 | |
| 	return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| STATIC bool try_pred(b)
 | |
| 	bblock_p b;
 | |
| {
 | |
| 	/* See if there is any pair (b1,b2), both in PRED(b) for
 | |
| 	 * which we can perform cross jumping.
 | |
| 	 */
 | |
| 
 | |
| 	register bblock_p b1,b2;
 | |
| 	register Lindex i,j;
 | |
| 	lset s = b->b_pred;
 | |
| 
 | |
| 	for (i = Lfirst(s); i != (Lindex) 0; i = Lnext(i,s)) {
 | |
| 		b1 = (bblock_p) Lelem(i);
 | |
| 		if (Lnrelems(b1->b_succ) != 1) continue;
 | |
| 		for (j = Lfirst(s); j != (Lindex) 0; j = Lnext(j,s)) {
 | |
| 			b2 = (bblock_p) Lelem(j);
 | |
| 			if (b1 != b2 && Lnrelems(b2->b_succ) == 1) {
 | |
| 				if (try_tail(b1,b2)) return TRUE;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return FALSE;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| cj_optimize(p)
 | |
| 	proc_p p;
 | |
| {
 | |
| 	/* Perform cross jumping for procedure p.
 | |
| 	 * In case cases a cross-jumping optimization which give
 | |
| 	 * new opportunities for further cross-jumping optimizations.
 | |
| 	 * Hence we repeat the whole process for the entire procedure,
 | |
| 	 * untill we find no further optimizations.
 | |
| 	 */
 | |
| 
 | |
| 	bblock_p b;
 | |
| 	bool changes = TRUE;
 | |
| 
 | |
| 	while(changes) {
 | |
| 		changes = FALSE;
 | |
| 		b = p->p_start; 
 | |
| 		while (b != (bblock_p) 0) {
 | |
| 			if (try_pred(b)) {
 | |
| 				changes = TRUE;
 | |
| 			} else {
 | |
| 				b = b->b_next;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| main(argc,argv)
 | |
| 	int argc;
 | |
| 	char *argv[];
 | |
| {
 | |
| 	go(argc,argv,no_action,cj_optimize,no_action,no_action);
 | |
| 	report("cross jumps",Scj);
 | |
| 	exit(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /******
 | |
|  * Debugging stuff
 | |
|  */
 | |
| 
 | |
| extern char em_mnem[]; /* The mnemonics of the EM instructions. */
 | |
| 
 | |
| STATIC showinstr(lnp) line_p lnp; {
 | |
| 
 | |
|     /* Makes the instruction in `lnp' human readable. Only lines that
 | |
|      * can occur in expressions that are going to be eliminated are
 | |
|      * properly handled.
 | |
|      */
 | |
|     if (lnp == 0) return;
 | |
|     if (INSTR(lnp) < sp_fmnem || INSTR(lnp) > sp_lmnem) {
 | |
| 	printf("\t*** ?\n");
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     printf("\t%s", &em_mnem[4 * (INSTR(lnp)-sp_fmnem)]);
 | |
|     switch (TYPE(lnp)) {
 | |
| 	case OPNO:
 | |
| 	    break;
 | |
| 	case OPSHORT:
 | |
| 	    printf(" %d", SHORT(lnp)); break;
 | |
| 	case OPOBJECT:
 | |
| 	    printf(" %d", OBJ(lnp)->o_id); break;
 | |
| 	case OPOFFSET:
 | |
| 	    printf(" %ld", OFFSET(lnp)); break;
 | |
| 	default:
 | |
| 	    printf(" ?"); break;
 | |
|     }
 | |
|     printf("\n");
 | |
| } /* showinstr */
 | |
| 
 | |
| 
 | |
| STATIC print_list(list,b1,b2,p)
 | |
| 	line_p list;
 | |
| 	bblock_p b1,b2;
 | |
| 	proc_p p;
 | |
| {
 | |
| 	line_p l;
 | |
| 	printf("block %d and %d of proc %d:\n",b1->b_id,b2->b_id,p->p_id);
 | |
| 	for (l = list; l != 0; l = l->l_next) {
 | |
| 		showinstr(l);
 | |
| 	}
 | |
| }
 |