206 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
	
		
			5.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|   (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|   See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
| */
 | |
| 
 | |
| /* $Header$ */
 | |
| 
 | |
| /*
 | |
| 	ROUTINE TO MULTIPLY TWO EXTENDED FORMAT NUMBERS
 | |
| */
 | |
| 
 | |
| # include "adder.h"
 | |
| # include "FP_bias.h"
 | |
| # include "FP_trap.h"
 | |
| # include "FP_types.h"
 | |
| 
 | |
| mul_ext(e1,e2)
 | |
| EXTEND	*e1,*e2;
 | |
| {
 | |
| 	register short	k,i,j;		/* loop control	*/
 | |
| 	long  unsigned	*reg[7];
 | |
| 	long  unsigned	tmp[4];
 | |
| 	short unsigned	mp[4];	/* multiplier */
 | |
| 	short unsigned	mc[4];	/* multipcand */
 | |
| 	B64	low64,tmp64;	/* 64 bit storage	*/
 | |
| 
 | |
| #ifdef	PRT_EXT
 | |
| 	prt_ext("before MUL_EXT() e1:",e1);
 | |
| 	prt_ext("before MUL_EXT() e2:",e2);
 | |
| #endif
 | |
| 	/* first save the sign (XOR)			*/
 | |
| 
 | |
| 	e1->sign ^= e2->sign;
 | |
| 
 | |
| 	/********************************************************/
 | |
| 	/* 	 	INCREASE EXPONENT BY ONE (1)	    	*/
 | |
| 	/*							*/
 | |
| 	/* the nature of the multiplication algorithm used	*/
 | |
| 	/* results in an exponent that is small by an additive	*/
 | |
| 	/* factor of one (1);					*/
 | |
| 	/* if the maximum bit is set it will not be subtracted	*/
 | |
| 	/* during normalization -> this is correct and can be	*/
 | |
| 	/* expected often with normalized numbers		*/
 | |
| 	/*	HOWEVER, it is also possible that unnormalized	*/
 | |
| 	/*	numbers are used. Rather than shifting here	*/
 | |
| 	/*	always(!) (unless L bit is set) I chose to	*/
 | |
| 	/*	increase the exponent by one - a simple (FAST)	*/
 | |
| 	/*	process - and to decrease it later during	*/
 | |
| 	/*	normalization.					*/
 | |
| 	/*							*/
 | |
| 	/********************************************************/
 | |
| 	/* The effects of bias (as used here)			*/
 | |
| 	/* and the multiplication algorithm used cancel		*/
 | |
| 	/* so these statements are commented out		*/
 | |
| 	/* August 1985 - if changing the Leading Bit (or NORMBIT) */
 | |
| 	/* this problem with the multiplication algorithm no longer */
 | |
| 	/* exists - bias must be subtracted now			*/
 | |
| 	/*							*/
 | |
| 	/* e1->exp++;						*/
 | |
| 	/********************************************************/
 | |
| 
 | |
| 	/* next add the exponents			*/
 | |
| 
 | |
| 	e1->exp += e2->exp;
 | |
| 	e1->exp -= 1;			/* correction for bias	*/
 | |
| 
 | |
| 					/* check for overflow	*/
 | |
| 	if (e1->exp >= EXT_MAX)	{
 | |
| #ifdef	PRT_EXT
 | |
| 		prt_ext("EXT_MUL OVERFLOW",e1);
 | |
| #endif
 | |
| 		trap(EFOVFL);
 | |
| 			/* if caught 			*/
 | |
| 			/* return signed infinity	*/
 | |
| 		e1->exp = EXT_MAX;
 | |
| infinity:	e1->m1 = e1->m2 =0L;
 | |
| #ifdef	PRT_EXT
 | |
| 		prt_ext("after  MUL_EXT() e1:",e1);
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 				/* check for underflow	*/
 | |
| 	if (e1->exp < EXT_MIN)	{
 | |
| #ifdef	PRT_EXT
 | |
| 		prt_ext("EXT_MUL UNDERFLOW",e1);
 | |
| #endif
 | |
| 		trap(EFUNFL);
 | |
| 		e1->exp = EXT_MIN;
 | |
| 		goto infinity;
 | |
| 	}
 | |
| 
 | |
| 	/* 128 bit multiply of mantissas			*/
 | |
| 
 | |
| 		/* assign unknown long formats		*/
 | |
| 		/* to known unsigned word formats	*/
 | |
| 	mp[0] = e1->m1 >> 16;
 | |
| 	mp[1] = (unsigned short) e1->m1;
 | |
| 	mp[2] = e1->m2 >> 16;
 | |
| 	mp[3] = (unsigned short) e1->m2;
 | |
| 	mc[0] = e2->m1 >> 16;
 | |
| 	mc[1] = (unsigned short) e2->m1;
 | |
| 	mc[2] = e2->m2 >> 16;
 | |
| 	mc[3] = (unsigned short) e2->m2;
 | |
| # ifdef	DEBUG
 | |
| 	for(i=0;i<4;i++)
 | |
| 		printf("%04x",mp[i]);
 | |
| 	putchar('\r');
 | |
| 	putchar('\n');
 | |
| 	for(i=0;i<4;i++)
 | |
| 		printf("%04x",mc[i]);
 | |
| 	putchar('\r');
 | |
| 	putchar('\n');
 | |
| # endif
 | |
| 	/*
 | |
| 	 *	assign pointers
 | |
| 	 */
 | |
| 	reg[0] = &e1->m1;	/* the answer goes here */
 | |
| 	reg[1] = &tmp[1];
 | |
| 	reg[2] = &e1->m2;	/* and here	*/
 | |
| 	reg[3] = &tmp[2];
 | |
| 	reg[4] = &low64.h_32;
 | |
| 	reg[5] = &tmp[3];
 | |
| 	reg[6] = &low64.l_32;
 | |
| 
 | |
| 	/*
 | |
| 	 *	zero registers
 | |
| 	 */
 | |
| 	for(i=7;i--;)
 | |
| 		*reg[i] = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 *	fill registers with their components
 | |
| 	 */
 | |
| 	for(i=4;i--;) if (mp[i])
 | |
| 		for(j=4;j--;) if (mc[j]) {
 | |
| 			k = i+j;
 | |
| 			tmp[0] = (long)mp[i] * (long)mc[j];
 | |
| # ifdef	PRT_EXT2
 | |
| 			printf("%04x * %04x == %08X ",mp[i],mc[j],tmp[0]);
 | |
| 			printf("index == %d ",k);
 | |
| 			printf("register before add == %08X\n",*reg[k]);
 | |
| 			fflush(stdout);
 | |
| # endif
 | |
| #ifdef	PRT_ADD
 | |
| 	printf("REGISTERS-----\n");
 | |
| 	printf("%08X %08X %08X %08X\n0000%04x %04x%04x %04x%04x %04x0000\n",
 | |
| 		*reg[0],*reg[2],*reg[4],*reg[6],
 | |
| 		(short)(*reg[1]>>16),(short)(*reg[1]),(short)(*reg[3]>>16),
 | |
| 		(short)(*reg[3]),(short)(*reg[5]>>16),(short)(*reg[5]));
 | |
| # endif
 | |
| 			if (b32_add(reg[k],tmp))	{
 | |
| 				for(tmp[0] = 0x10000L;k>0;)
 | |
| 					if (b32_add(reg[--k],tmp) == 0)
 | |
| 						break;
 | |
| #ifdef	PRT_ADD
 | |
| 	printf("CARRY---------\n");
 | |
| 	printf("%08X %08X %08X %08X\n0000%04x %04x%04x %04x%04x %04x0000\n",
 | |
| 		*reg[0],*reg[2],*reg[4],*reg[6],
 | |
| 		(short)(*reg[1]>>16),(short)(*reg[1]),(short)(*reg[3]>>16),
 | |
| 		(short)(*reg[3]),(short)(*reg[5]>>16),(short)(*reg[5]));
 | |
| #endif
 | |
| 			}
 | |
| 		}
 | |
| 	
 | |
| 	/*
 | |
| 	 *	combine the registers to a total
 | |
| 	 */
 | |
| #ifdef	PRT_ADD
 | |
| 	printf("%08X %08X %08X %08X\n0000%04x %04x%04x %04x%04x %04x0000\n",
 | |
| 		*reg[0],*reg[2],*reg[4],*reg[6],
 | |
| 		(short)(*reg[1]>>16),(short)(*reg[1]),(short)(*reg[3]>>16),
 | |
| 		(short)(*reg[3]),(short)(*reg[5]>>16),(short)(*reg[5]));
 | |
| # endif
 | |
| 	tmp64.h_32 = (*reg[1]>>16);
 | |
| 	tmp64.l_32 = (*reg[1]<<16) + (*reg[3]>>16);
 | |
| # ifdef PRT_ALL
 | |
| 	printf("%08X%08X tmp64\n",tmp64.h_32,tmp64.l_32);
 | |
| 	fflush(stdout);
 | |
| 	printf("%08X%08X e1->m1\n",e1->m1,e1->m2);
 | |
| 	fflush(stdout);
 | |
| # endif
 | |
| 	b64_add((B64 *)&e1->m1,&tmp64);
 | |
| # ifdef PRT_ALL
 | |
| 	printf("b64_add:\n");
 | |
| 	printf("%08X%08X e1->m1\n",e1->m1,e1->m2);
 | |
| 	fflush(stdout);
 | |
| # endif
 | |
| 	tmp64.l_32 = *reg[5]<<16;
 | |
| 	tmp64.h_32 = (*reg[5]>>16) + (*reg[3]<<16);
 | |
| 	if (b64_add(&low64,&tmp64))
 | |
| 		if (++e1->m2 == 0)
 | |
| 			e1->m1++;
 | |
| 
 | |
| # ifdef PRT_ADD
 | |
| 	printf("%08X %08X %08X %08X\n",e1->m1,e1->m2,low64.h_32,low64.l_32);
 | |
| 	fflush(stdout);
 | |
| #endif
 | |
| #ifdef	PRT_EXT
 | |
| 	prt_ext("after  MUL_EXT() e1:",e1);
 | |
| #endif	PRT_EXT
 | |
| 	nrm_ext(e1);
 | |
| #ifdef	PRT_EXT
 | |
| 	prt_ext("after  NRM_EXT() e1:",e1);
 | |
| 	sleep(4);
 | |
| #endif	PRT_EXT
 | |
| }
 |