155 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			155 lines
		
	
	
	
		
			3.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#ifndef NORCSID
 | 
						|
static char rcsid[]= "$Header$";
 | 
						|
#endif
 | 
						|
 | 
						|
#include "assert.h"
 | 
						|
#include "param.h"
 | 
						|
#include "set.h"
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * This file implements the marriage thesis from Hall.
 | 
						|
 * The thesis says that given a number, say N, of subsets from
 | 
						|
 * a finite set, it is possible to create a set with cardinality N,
 | 
						|
 * that contains one member for each of the subsets,
 | 
						|
 * iff for each number, say M, of subsets from 2 to N the union of
 | 
						|
 * each M-tuple sets has cardinality >= M.
 | 
						|
 *
 | 
						|
 * So what, you might say. As indeed I did.
 | 
						|
 * But this is actually used here to check the possibility of each
 | 
						|
 * code rule. If a code rule has a number of token_sets in the with
 | 
						|
 * clause and a number of properties in the uses rule it must be
 | 
						|
 * possible to do this from an empty fakestack. Hall helps.
 | 
						|
 */
 | 
						|
 | 
						|
#define MAXHALL (TOKPATMAX+MAXALLREG)
 | 
						|
short hallsets[MAXHALL][SETSIZE];
 | 
						|
int nhallsets= -1;
 | 
						|
int hallfreq[MAXHALL][2];
 | 
						|
 | 
						|
hallverbose() {
 | 
						|
	register i;
 | 
						|
	register max;
 | 
						|
	
 | 
						|
	fprintf(stderr,"Table of hall frequencies\n   #   pre   post\n");
 | 
						|
	for (max=MAXHALL-1;hallfreq[max][0]==0 && hallfreq[max][1]==0;max--)
 | 
						|
		;
 | 
						|
	for (i=0;i<=max;i++)
 | 
						|
		fprintf(stderr,"%3d%6d%6d\n",i,hallfreq[i][0],hallfreq[i][1]);
 | 
						|
}
 | 
						|
 | 
						|
inithall() {
 | 
						|
 | 
						|
	assert(nhallsets == -1);
 | 
						|
	nhallsets=0;
 | 
						|
}
 | 
						|
 | 
						|
nexthall(sp) register short *sp; {
 | 
						|
	register i;
 | 
						|
	
 | 
						|
	assert(nhallsets>=0);
 | 
						|
	for(i=0;i<SETSIZE;i++)
 | 
						|
		hallsets[nhallsets][i] = sp[i];
 | 
						|
	nhallsets++;
 | 
						|
}
 | 
						|
 | 
						|
card(sp) register short *sp; {
 | 
						|
	register sum,i;
 | 
						|
	
 | 
						|
	sum=0;
 | 
						|
	for(i=0;i<8*SETSIZE;i++)
 | 
						|
		if (BIT(sp,i))
 | 
						|
			sum++;
 | 
						|
	return(sum);
 | 
						|
}
 | 
						|
 | 
						|
checkhall() {
 | 
						|
 | 
						|
	assert(nhallsets>=0);
 | 
						|
	if (!hall())
 | 
						|
		error("Hall says: \"You can't have those registers\"");
 | 
						|
}
 | 
						|
 | 
						|
hall() {
 | 
						|
	register i,j,k;
 | 
						|
	int ok;
 | 
						|
	
 | 
						|
	hallfreq[nhallsets][0]++;
 | 
						|
	/*
 | 
						|
	 * If a set has cardinality >= nhallsets it can never be the cause
 | 
						|
	 * of the hall algorithm failing. So it can be thrown away.
 | 
						|
	 * But then nhallsets is less, so this step can be re-applied.
 | 
						|
	 */
 | 
						|
 | 
						|
	do {
 | 
						|
		ok = 0;
 | 
						|
		for(i=0;i<nhallsets;i++)
 | 
						|
			if (card(hallsets[i])>=nhallsets) {
 | 
						|
				for (j=i+1;j<nhallsets;j++)
 | 
						|
					for(k=0;k<SETSIZE;k++)
 | 
						|
						hallsets[j-1][k] =
 | 
						|
							hallsets[j][k];
 | 
						|
				nhallsets--;
 | 
						|
				ok = 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
	} while (ok);
 | 
						|
	
 | 
						|
	/*
 | 
						|
	 * Now all sets have cardinality < nhallsets
 | 
						|
	 */
 | 
						|
	
 | 
						|
	hallfreq[nhallsets][1]++;
 | 
						|
	ok=recurhall(nhallsets,hallsets);
 | 
						|
	nhallsets = -1;
 | 
						|
	return(ok);
 | 
						|
}
 | 
						|
 | 
						|
recurhall(nhallsets,hallsets) short hallsets[][SETSIZE]; {
 | 
						|
	short copysets[MAXHALL][SETSIZE];
 | 
						|
	short setsum[SETSIZE];
 | 
						|
	register i,j,k,ncopys;
 | 
						|
	
 | 
						|
	/*
 | 
						|
	 * First check cardinality of union of all
 | 
						|
	 */
 | 
						|
	for(k=0;k<SETSIZE;k++)
 | 
						|
		setsum[k]=0;
 | 
						|
	for(i=0;i<nhallsets;i++)
 | 
						|
		unite(hallsets[i],setsum);
 | 
						|
	if (card(setsum)<nhallsets)
 | 
						|
		return(0);
 | 
						|
	/*
 | 
						|
	 * Now check the hall property of everything but one set,
 | 
						|
	 * for all sets
 | 
						|
	 */
 | 
						|
	for(i=0;i<nhallsets;i++) {
 | 
						|
		ncopys=0;
 | 
						|
		for(j=0;j<nhallsets;j++) if (j!=i) {
 | 
						|
			for(k=0;k<SETSIZE;k++)
 | 
						|
				copysets[ncopys][k] = hallsets[j][k];
 | 
						|
			ncopys++;
 | 
						|
		}
 | 
						|
		assert(ncopys == nhallsets-1);
 | 
						|
		if (!recurhall(ncopys,copysets))
 | 
						|
			return(0);
 | 
						|
	}
 | 
						|
	return(1);
 | 
						|
}
 | 
						|
 | 
						|
unite(sp,into) register short *sp,*into; {
 | 
						|
	register i;
 | 
						|
	
 | 
						|
	for(i=0;i<SETSIZE;i++)
 | 
						|
		into[i] |= sp[i];
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Limerick (rot13)
 | 
						|
 *
 | 
						|
 * N zngurzngvpvna anzrq Unyy
 | 
						|
 * Unf n urknurqebavpny onyy,
 | 
						|
 * 	Naq gur phor bs vgf jrvtug
 | 
						|
 * 	Gvzrf uvf crpxre'f, cyhf rvtug
 | 
						|
 * Vf uvf cubar ahzore -- tvir uvz n pnyy..
 | 
						|
 */
 |