ack/lang/m2/comp/LLlex.c
1986-03-20 14:52:03 +00:00

384 lines
6.1 KiB
C

/* LEXICAL ANALYSER FOR MODULA-2 */
#include "input.h"
#include <alloc.h>
#include "f_info.h"
#include "Lpars.h"
#include "class.h"
#include "param.h"
#include "idf.h"
#include "LLlex.h"
long str2long();
char *GetString();
struct token dot, aside;
static char *RcsId = "$Header$";
int
LLlex()
{
/* LLlex() plays the role of Lexical Analyzer for the parser.
The putting aside of tokens is taken into account.
*/
if (ASIDE) { /* a token is put aside */
dot = aside;
ASIDE = 0;
}
else {
GetToken(&dot);
if (DOT == EOI) DOT = -1;
}
return DOT;
}
int
GetToken(tk)
register struct token *tk;
{
char buf[(IDFSIZE > NUMSIZE ? IDFSIZE : NUMSIZE) + 1];
register int ch, nch;
again:
LoadChar(ch);
if ((ch & 0200) && ch != EOI) {
fatal("non-ascii '\\%03o' read", ch & 0377);
}
switch (class(ch)) {
case STSKIP:
goto again;
case STNL:
LineNumber++;
goto again;
case STGARB:
if (040 < ch && ch < 0177) {
lexerror("garbage char %c", ch);
}
else {
lexerror("garbage char \\%03o", ch);
}
goto again;
case STSIMP:
if (ch == '(') {
LoadChar(nch);
if (nch == '*') {
SkipComment();
goto again;
}
else {
PushBack(nch);
}
}
return tk->tk_symb = ch;
case STCOMP:
LoadChar(nch);
switch (ch) {
case '.':
if (nch == '.') {
return tk->tk_symb = UPTO;
}
PushBack(nch);
return tk->tk_symb = ch;
case ':':
if (nch == '=') {
return tk->tk_symb = BECOMES;
}
PushBack(nch);
return tk->tk_symb = ch;
case '<':
if (nch == '=') {
return tk->tk_symb = LESSEQUAL;
}
else
if (nch == '>') {
return tk->tk_symb = UNEQUAL;
}
PushBack(nch);
return tk->tk_symb = ch;
case '>':
if (nch == '=') {
return tk->tk_symb = GREATEREQUAL;
}
PushBack(nch);
return tk->tk_symb = ch;
default :
crash("bad STCOMP");
}
case STIDF:
{
register char *tg = &buf[0];
register struct idf *id;
do {
if (tg - buf < IDFSIZE) *tg++ = ch;
LoadChar(ch);
} while(in_idf(ch));
if (ch != EOI)
PushBack(ch);
*tg++ = '\0';
id = tk->TOK_IDF = str2idf(buf, 1);
if (!id) fatal("Out of memory");
return tk->tk_symb = id->id_reserved ? id->id_reserved : IDENT;
}
case STSTR:
tk->TOK_STR = GetString(ch);
return tk->tk_symb = STRING;
case STNUM:
{
/* The problem arising with the "parsing" of a number
is that we don't know the base in advance so we
have to read the number with the help of a rather
complex finite automaton.
Excuses for the very ugly code!
*/
register char *np = &buf[1];
/* allow a '-' to be added */
*np++ = ch;
LoadChar(ch);
while (is_oct(ch)) {
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
}
switch (ch) {
case 'H':
Shex: *np++ = '\0';
/* Type is integer */
tk->TOK_INT = str2long(&buf[1], 16);
return tk->tk_symb = INTEGER;
case '8':
case '9':
do {
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
} while (is_dig(ch));
if (is_hex(ch))
goto S2;
if (ch == 'H')
goto Shex;
if (ch == '.')
goto Sreal;
PushBack(ch);
goto Sdec;
case 'B':
case 'C':
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
if (ch == 'H')
goto Shex;
if (is_hex(ch))
goto S2;
PushBack(ch);
ch = *--np;
*np++ = '\0';
/*
* If (ch == 'C') type is a CHAR
* else type is an INTEGER
*/
tk->TOK_INT = str2long(&buf[1], 8);
return tk->tk_symb = INTEGER;
case 'A':
case 'D':
case 'E':
case 'F':
S2:
do {
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
} while (is_hex(ch));
if (ch != 'H') {
lexerror("H expected after hex number");
PushBack(ch);
}
goto Shex;
case '.':
Sreal:
/* This '.' could be the first of the '..'
token. At this point, we need a look-ahead
of two characters.
*/
LoadChar(ch);
if (ch == '.') {
/* Indeed the '..' token
*/
PushBack(ch);
PushBack(ch);
goto Sdec;
}
/* a real constant */
if (np < &buf[NUMSIZE]) {
*np++ = '.';
}
if (is_dig(ch)) {
/* Fractional part
*/
do {
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
} while (is_dig(ch));
}
if (ch == 'E') {
/* Scale factor
*/
if (np < &buf[NUMSIZE]) {
*np++ = 'E';
}
LoadChar(ch);
if (ch == '+' || ch == '-') {
/* Signed scalefactor
*/
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
}
if (is_dig(ch)) {
do {
if (np < &buf[NUMSIZE]) {
*np++ = ch;
}
LoadChar(ch);
} while (is_dig(ch));
}
else {
lexerror("bad scale factor");
}
}
PushBack(ch);
if (np == &buf[NUMSIZE + 1]) {
lexerror("floating constant too long");
tk->TOK_REL = Salloc("0.0", 5);
}
else {
tk->TOK_REL = Salloc(buf, np - buf) + 1;
}
return tk->tk_symb = REAL;
default:
PushBack(ch);
Sdec:
*np++ = '\0';
/* Type is an integer */
tk->TOK_INT = str2long(&buf[1], 10);
return tk->tk_symb = INTEGER;
}
/*NOTREACHED*/
}
case STEOI:
return tk->tk_symb = EOI;
case STCHAR:
default:
crash("bad character class %d", class(ch));
}
}
char *
GetString(upto)
{
register int ch;
int str_size;
char *str = Malloc(str_size = 32);
register int pos = 0;
LoadChar(ch);
while (ch != upto) {
if (class(ch) == STNL) {
lexerror("newline in string");
LineNumber++;
break;
}
if (ch == EOI) {
lexerror("end-of-file in string");
break;
}
str[pos++] = ch;
if (pos == str_size) {
str = Srealloc(str, str_size += 8);
}
LoadChar(ch);
}
str[pos] = '\0';
return str;
}
SkipComment()
{
/* Skip Modula-2 like comment (* ... *).
Note that comment may be nested.
*/
register int ch;
register int NestLevel = 0;
LoadChar(ch);
for (;;) {
if (class(ch) == STNL) {
LineNumber++;
}
else
if (ch == '(') {
LoadChar(ch);
if (ch == '*') {
++NestLevel;
}
else {
continue;
}
}
else
if (ch == '*') {
LoadChar(ch);
if (ch == ')') {
if (NestLevel-- == 0) {
return;
}
}
else {
continue;
}
}
LoadChar(ch);
}
}