112 lines
		
	
	
	
		
			1.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			112 lines
		
	
	
	
		
			1.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|  * See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
|  *
 | |
|  * Author: Ceriel J.H. Jacobs
 | |
|  */
 | |
| 
 | |
| /* $Header$ */
 | |
| #define __NO_DEFS
 | |
| #include <math.h>
 | |
| #include <pc_err.h>
 | |
| extern	_trp();
 | |
| 
 | |
| static double
 | |
| floor(x)
 | |
| 	double x;
 | |
| {
 | |
| 	extern double _fif();
 | |
| 	double val;
 | |
| 
 | |
| 	return _fif(x, 1.0, &val) < 0 ? val - 1.0 : val ;
 | |
| 	/*	this also works if _fif always returns a positive
 | |
| 		fractional part
 | |
| 	*/
 | |
| }
 | |
| 
 | |
| static double
 | |
| ldexp(fl,exp)
 | |
| 	double fl;
 | |
| 	int exp;
 | |
| {
 | |
| 	extern double _fef();
 | |
| 	int sign = 1;
 | |
| 	int currexp;
 | |
| 
 | |
| 	if (fl<0) {
 | |
| 		fl = -fl;
 | |
| 		sign = -1;
 | |
| 	}
 | |
| 	fl = _fef(fl,&currexp);
 | |
| 	exp += currexp;
 | |
| 	if (exp > 0) {
 | |
| 		while (exp>30) {
 | |
| 			fl *= (double) (1L << 30);
 | |
| 			exp -= 30;
 | |
| 		}
 | |
| 		fl *= (double) (1L << exp);
 | |
| 	}
 | |
| 	else	{
 | |
| 		while (exp<-30) {
 | |
| 			fl /= (double) (1L << 30);
 | |
| 			exp += 30;
 | |
| 		}
 | |
| 		fl /= (double) (1L << -exp);
 | |
| 	}
 | |
| 	return sign * fl;
 | |
| }
 | |
| 
 | |
| double
 | |
| _exp(x)
 | |
| 	double x;
 | |
| {
 | |
| 	/*	2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] */
 | |
| 	/*	Hart & Cheney #1069 */
 | |
| 
 | |
| 	static double p[3] = {
 | |
| 		 0.2080384346694663001443843411e+07,
 | |
| 		 0.3028697169744036299076048876e+05,
 | |
| 		 0.6061485330061080841615584556e+02
 | |
| 	};
 | |
| 
 | |
| 	static double q[4] = {
 | |
| 		 0.6002720360238832528230907598e+07,
 | |
| 		 0.3277251518082914423057964422e+06,
 | |
| 		 0.1749287689093076403844945335e+04,
 | |
| 		 0.1000000000000000000000000000e+01
 | |
| 	};
 | |
| 
 | |
| 	int negative = x < 0;
 | |
| 	int ipart, large = 0;
 | |
| 	double xsqr, xPxx, Qxx;
 | |
| 
 | |
| 	if (x < M_LN_MIN_D) {
 | |
| 		return M_MIN_D;
 | |
| 	}
 | |
| 	if (x >= M_LN_MAX_D) {
 | |
| 		if (x > M_LN_MAX_D) {
 | |
| 			_trp(EEXP);
 | |
| 			return HUGE;
 | |
| 		}
 | |
| 		return M_MAX_D;
 | |
| 	}
 | |
| 
 | |
| 	if (negative) {
 | |
| 		x = -x;
 | |
| 	}
 | |
| 	x /= M_LN2;
 | |
| 	ipart = floor(x);
 | |
| 	x -= ipart;
 | |
| 	if (x > 0.5) {
 | |
| 		large = 1;
 | |
| 		x -= 0.5;
 | |
| 	}
 | |
| 	xsqr = x * x;
 | |
| 	xPxx = x * POLYNOM2(xsqr, p);
 | |
| 	Qxx = POLYNOM3(xsqr, q);
 | |
| 	x = (Qxx + xPxx) / (Qxx - xPxx);
 | |
| 	if (large) x *= M_SQRT2;
 | |
| 	x = ldexp(x, ipart);
 | |
| 	if (negative) return 1.0/x;
 | |
| 	return x;
 | |
| }
 |