ack/lang/m2/comp/chk_expr.c

1420 lines
30 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* E X P R E S S I O N C H E C K I N G */
/* $Header$ */
/* Check expressions, and try to evaluate them as far as possible.
*/
#include "debug.h"
#include <em_arith.h>
#include <em_label.h>
#include <assert.h>
#include <alloc.h>
#include "strict3rd.h"
#include "Lpars.h"
#include "idf.h"
#include "type.h"
#include "LLlex.h"
#include "def.h"
#include "node.h"
#include "scope.h"
#include "const.h"
#include "standards.h"
#include "chk_expr.h"
#include "misc.h"
#include "warning.h"
#include "main.h"
#include "nostrict.h"
extern char *symbol2str();
extern char *sprint();
STATIC int
df_error(nd, mess, edf)
t_node *nd; /* node on which error occurred */
char *mess; /* error message */
register t_def *edf; /* do we have a name? */
{
if (edf) {
if (edf->df_kind != D_ERROR) {
node_error(nd,"\"%s\": %s", edf->df_idf->id_text, mess);
}
}
else node_error(nd, mess);
return 0;
}
STATIC int
ex_error(nd, mess)
register t_node *nd;
char *mess;
{
node_error(nd, "\"%s\": %s", symbol2str(nd->nd_symb), mess);
return 0;
}
MkCoercion(pnd, tp)
t_node **pnd;
register t_type *tp;
{
/* Make a coercion from the node indicated by *pnd to the
type indicated by tp. If the node indicated by *pnd
is constant, try to do the coercion compile-time.
Coercions are inserted in the tree when
- the expression is not constant or
- we are in the second pass and the coercion might cause
an error
*/
register t_node *nd = *pnd;
register t_type *nd_tp = nd->nd_type;
extern int pass_1;
char *wmess = 0;
if (nd_tp == tp || nd_tp->tp_fund == T_STRING /* Why ??? */) return;
nd_tp = BaseType(nd_tp);
if (nd->nd_class == Value &&
nd_tp->tp_fund != T_REAL &&
tp->tp_fund != T_REAL) {
/* Constant expression not involving REALs */
switch(tp->tp_fund) {
case T_SUBRANGE:
case T_ENUMERATION:
case T_CHAR:
if (! in_range(nd->nd_INT, tp)) {
wmess = "range bound";
}
break;
case T_INTORCARD:
case T_CARDINAL:
case T_POINTER:
if ((nd_tp->tp_fund == T_INTEGER && nd->nd_INT < 0) ||
(nd->nd_INT & ~full_mask[(int)(tp->tp_size)])) {
wmess = "conversion";
}
break;
case T_INTEGER: {
long i = min_int[(int)(tp->tp_size)];
long j = nd->nd_INT & i;
if (j != 0 && (nd_tp->tp_fund != T_INTEGER || j != i)) {
wmess = "conversion";
}
}
break;
}
if (wmess) {
node_warning(nd, W_ORDINARY, "might cause %s error", wmess);
}
if (!wmess || pass_1) {
nd->nd_type = tp;
return;
}
}
*pnd = nd = MkNode(Uoper, NULLNODE, nd, &(nd->nd_token));
nd->nd_symb = COERCION;
nd->nd_type = tp;
}
int
ChkVariable(expp, flags)
register t_node *expp;
{
/* Check that "expp" indicates an item that can be
assigned to.
*/
return ChkDesig(expp, flags) &&
( expp->nd_class != Def ||
( expp->nd_def->df_kind & (D_FIELD|D_VARIABLE)) ||
df_error(expp, "variable expected", expp->nd_def));
}
STATIC int
ChkArrow(expp)
register t_node *expp;
{
/* Check an application of the '^' operator.
The operand must be a variable of a pointer type.
*/
register t_type *tp;
assert(expp->nd_class == Arrow);
assert(expp->nd_symb == '^');
expp->nd_type = error_type;
if (! ChkVariable(expp->nd_right, D_USED)) return 0;
tp = expp->nd_right->nd_type;
if (tp->tp_fund != T_POINTER) {
return ex_error(expp, "illegal operand type");
}
expp->nd_type = RemoveEqual(PointedtoType(tp));
return 1;
}
STATIC int
ChkArr(expp, flags)
register t_node *expp;
{
/* Check an array selection.
The left hand side must be a variable of an array type,
and the right hand side must be an expression that is
assignment compatible with the array-index.
*/
register t_type *tpl;
assert(expp->nd_class == Arrsel);
assert(expp->nd_symb == '[');
expp->nd_type = error_type;
if (! (ChkVariable(expp->nd_left, flags) & ChkExpression(expp->nd_right))) {
/* Bitwise and, because we want them both evaluated.
*/
return 0;
}
tpl = expp->nd_left->nd_type;
if (tpl->tp_fund != T_ARRAY) {
node_error(expp, "not indexing an ARRAY type");
return 0;
}
expp->nd_type = RemoveEqual(tpl->arr_elem);
/* Type of the index must be assignment compatible with
the index type of the array (Def 8.1).
However, the index type of a conformant array is not specified.
In our implementation it is CARDINAL.
*/
return ChkAssCompat(&(expp->nd_right),
BaseType(IndexType(tpl)),
"index type");
}
#ifdef DEBUG
STATIC int
ChkValue(expp)
t_node *expp;
{
switch(expp->nd_symb) {
case REAL:
case STRING:
case INTEGER:
return 1;
default:
crash("(ChkValue)");
}
/*NOTREACHED*/
}
#endif
STATIC int
ChkLinkOrName(expp, flags)
register t_node *expp;
{
/* Check either an ID or a construction of the form
ID.ID [ .ID ]*
*/
register t_def *df;
expp->nd_type = error_type;
if (expp->nd_class == Name) {
df = lookfor(expp, CurrVis, 1, flags);
expp->nd_def = df;
expp->nd_class = Def;
expp->nd_type = RemoveEqual(df->df_type);
}
else if (expp->nd_class == Link) {
/* A selection from a record or a module.
Modules also have a record type.
*/
register t_node *left = expp->nd_left;
assert(expp->nd_symb == '.');
if (! ChkDesig(left, flags)) return 0;
if (left->nd_class==Def &&
(left->nd_type->tp_fund != T_RECORD ||
!(left->nd_def->df_kind & (D_MODULE|D_VARIABLE|D_FIELD))
)
) {
return df_error(left, "illegal selection", left->nd_def);
}
if (left->nd_type->tp_fund != T_RECORD) {
node_error(left, "illegal selection");
return 0;
}
if (!(df = lookup(expp->nd_IDF, left->nd_type->rec_scope, D_IMPORTED, flags))) {
id_not_declared(expp);
return 0;
}
expp->nd_def = df;
expp->nd_type = RemoveEqual(df->df_type);
expp->nd_class = Def;
if (!(df->df_flags & (D_EXPORTED|D_QEXPORTED))) {
/* Fields of a record are always D_QEXPORTED,
so ...
*/
if (df_error(expp,
"not exported from qualifying module",
df)) assert(0);
}
if (!(left->nd_class == Def &&
left->nd_def->df_kind == D_MODULE)) {
return 1;
}
FreeNode(left);
expp->nd_left = 0;
}
assert(expp->nd_class == Def);
return expp->nd_def->df_kind != D_ERROR;
}
STATIC int
ChkExLinkOrName(expp)
register t_node *expp;
{
/* Check either an ID or an ID.ID [.ID]* occurring in an
expression.
*/
register t_def *df;
if (! ChkLinkOrName(expp, D_USED)) return 0;
df = expp->nd_def;
if (df->df_kind & (D_ENUM | D_CONST)) {
/* Replace an enum-literal or a CONST identifier by its value.
*/
if (df->df_kind == D_ENUM) {
expp->nd_INT = df->enm_val;
expp->nd_symb = INTEGER;
}
else {
unsigned int ln = expp->nd_lineno;
assert(df->df_kind == D_CONST);
expp->nd_token = df->con_const;
expp->nd_lineno = ln;
}
if (df->df_type->tp_fund == T_SET) {
expp->nd_class = Set;
inc_refcount(expp->nd_set);
}
else expp->nd_class = Value;
}
if (!(df->df_kind & D_VALUE)) {
return df_error(expp, "value expected", df);
}
if (df->df_kind == D_PROCEDURE) {
/* Check that this procedure is one that we may take the
address from.
*/
if (df->df_type == std_type || df->df_scope->sc_level > 0) {
/* Address of standard or nested procedure
taken.
*/
node_error(expp,
"standard or local procedures may not be assigned");
return 0;
}
}
return 1;
}
STATIC int
ChkEl(expr, tp)
register t_node **expr;
t_type *tp;
{
return ChkExpression(*expr) && ChkCompat(expr, tp, "set element");
}
STATIC int
ChkElement(expp, tp, set)
t_node **expp;
t_type *tp;
arith *set;
{
/* Check elements of a set. This routine may call itself
recursively.
Also try to compute the set!
*/
register t_node *expr = *expp;
t_type *el_type = ElementType(tp);
register unsigned int i;
arith low, high;
if (expr->nd_class == Link && expr->nd_symb == UPTO) {
/* { ... , expr1 .. expr2, ... }
First check expr1 and expr2, and try to compute them.
*/
if (! (ChkEl(&(expr->nd_left), el_type) &
ChkEl(&(expr->nd_right), el_type))) {
return 0;
}
if (!(expr->nd_left->nd_class == Value &&
expr->nd_right->nd_class == Value)) {
return 1;
}
/* We have a constant range. Put all elements in the
set
*/
low = expr->nd_left->nd_INT;
high = expr->nd_right->nd_INT;
}
else {
if (! ChkEl(expp, el_type)) return 0;
expr = *expp;
if (expr->nd_class != Value) {
return 1;
}
low = high = expr->nd_INT;
}
if (! chk_bounds(low, high, BaseType(el_type)->tp_fund)) {
node_error(expr, "lower bound exceeds upper bound in range");
return 0;
}
if (! in_range(low, el_type) || ! in_range(high, el_type)) {
node_error(expr, "set element out of range");
return 0;
}
low -= tp->set_low;
high -= tp->set_low;
for (i=(unsigned)low; i<= (unsigned)high; i++) {
set[i/wrd_bits] |= (1<<(i%wrd_bits));
}
FreeNode(expr);
*expp = 0;
return 1;
}
arith *
MkSet(size)
unsigned size;
{
register arith *s;
size = (size / (int) word_size + 1) * sizeof(arith);
s = (arith *) Malloc(size);
clear((char *) s , size);
s++;
inc_refcount(s);
return s;
}
FreeSet(s)
register arith *s;
{
dec_refcount(s);
if (refcount(s) <= 0) {
assert(refcount(s) == 0);
free((char *) (s-1));
}
}
STATIC int
ChkSet(expp)
register t_node *expp;
{
/* Check the legality of a SET aggregate, and try to evaluate it
compile time. Unfortunately this is all rather complicated.
*/
register t_type *tp;
register t_node *nd;
register t_def *df;
int retval = 1;
int SetIsConstant = 1;
assert(expp->nd_symb == SET);
expp->nd_type = error_type;
expp->nd_class = Set;
/* First determine the type of the set
*/
if (nd = expp->nd_left) {
/* A type was given. Check it out
*/
if (! ChkDesig(nd, D_USED)) return 0;
assert(nd->nd_class == Def);
df = nd->nd_def;
if (!is_type(df) ||
(df->df_type->tp_fund != T_SET)) {
return df_error(nd, "not a SET type", df);
}
tp = df->df_type;
FreeNode(nd);
expp->nd_left = 0;
}
else tp = bitset_type;
expp->nd_type = tp;
nd = expp->nd_right;
/* Now check the elements given, and try to compute a constant set.
First allocate room for the set.
*/
expp->nd_set = MkSet((unsigned)(tp->tp_size));
/* Now check the elements, one by one
*/
while (nd) {
assert(nd->nd_class == Link && nd->nd_symb == ',');
if (!ChkElement(&(nd->nd_left), tp, expp->nd_set)) {
retval = 0;
}
if (nd->nd_left) SetIsConstant = 0;
nd = nd->nd_right;
}
if (SetIsConstant) {
FreeNode(expp->nd_right);
expp->nd_right = 0;
}
return retval;
}
STATIC t_node *
nextarg(argp, edf)
t_node **argp;
t_def *edf;
{
register t_node *arg = (*argp)->nd_right;
if (! arg) {
return (t_node *)
df_error(*argp, "too few arguments supplied", edf);
}
*argp = arg;
return arg->nd_left;
}
STATIC t_node *
getarg(argp, bases, designator, edf)
t_node **argp;
t_def *edf;
{
/* This routine is used to fetch the next argument from an
argument list. The argument list is indicated by "argp".
The parameter "bases" is a bitset indicating which types
are allowed at this point, and "designator" is a flag
indicating that the address from this argument is taken, so
that it must be a designator and may not be a register
variable.
*/
register t_node *left = nextarg(argp, edf);
if (! left ||
! (designator ? ChkVariable(left, D_USED|D_DEFINED) : ChkExpression(left))) {
return 0;
}
if (designator && left->nd_class==Def) {
left->nd_def->df_flags |= D_NOREG;
}
if (bases) {
t_type *tp = BaseType(left->nd_type);
if (! designator) MkCoercion(&((*argp)->nd_left), tp);
left = (*argp)->nd_left;
if (!(tp->tp_fund & bases)) {
return (t_node *)
df_error(left, "unexpected parameter type", edf);
}
}
return left;
}
STATIC t_node *
getname(argp, kinds, bases, edf)
t_node **argp;
t_def *edf;
{
/* Get the next argument from argument list "argp".
The argument must indicate a definition, and the
definition kind must be one of "kinds".
*/
register t_node *left = nextarg(argp, edf);
if (!left || ! ChkDesig(left, D_USED)) return 0;
if (left->nd_class != Def) {
return (t_node *)df_error(left, "identifier expected", edf);
}
if (!(left->nd_def->df_kind & kinds) ||
(bases && !(left->nd_type->tp_fund & bases))) {
return (t_node *)
df_error(left, "unexpected parameter type", edf);
}
return left;
}
STATIC int
ChkProcCall(expp)
t_node *expp;
{
/* Check a procedure call
*/
register t_node *left;
t_def *edf = 0;
register t_param *param;
int retval = 1;
int cnt = 0;
left = expp->nd_left;
if (left->nd_class == Def) {
edf = left->nd_def;
}
if (left->nd_type == error_type) {
/* Just check parameters as if they were value parameters
*/
while (expp->nd_right) {
if (getarg(&expp, 0, 0, edf)) { }
}
return 0;
}
expp->nd_type = RemoveEqual(ResultType(left->nd_type));
/* Check parameter list
*/
for (param = ParamList(left->nd_type); param; param = param->par_next) {
if (!(left = getarg(&expp, 0, IsVarParam(param), edf))) {
retval = 0;
cnt++;
continue;
}
cnt++;
if (left->nd_symb == STRING) {
TryToString(left, TypeOfParam(param));
}
if (! TstParCompat(cnt,
RemoveEqual(TypeOfParam(param)),
IsVarParam(param),
&(expp->nd_left),
edf)) {
retval = 0;
}
}
if (expp->nd_right) {
if (df_error(expp->nd_right,"too many parameters supplied",edf)){
assert(0);
}
while (expp->nd_right) {
if (getarg(&expp, 0, 0, edf)) { }
}
return 0;
}
return retval;
}
int
ChkFunCall(expp)
register t_node *expp;
{
/* Check a call that must have a result
*/
if (ChkCall(expp)) {
if (expp->nd_type != 0) return 1;
node_error(expp, "function call expected");
}
expp->nd_type = error_type;
return 0;
}
int
ChkCall(expp)
register t_node *expp;
{
/* Check something that looks like a procedure or function call.
Of course this does not have to be a call at all,
it may also be a cast or a standard procedure call.
*/
register t_node *left = expp->nd_left;
STATIC int ChkStandard();
STATIC int ChkCast();
/* First, get the name of the function or procedure
*/
if (ChkDesig(left, D_USED)) {
if (IsCast(left)) {
/* It was a type cast.
*/
return ChkCast(expp);
}
if (IsProcCall(left) || left->nd_type == error_type) {
/* A procedure call.
It may also be a call to a standard procedure
*/
if (left->nd_type == std_type) {
/* A standard procedure
*/
return ChkStandard(expp);
}
/* Here, we have found a real procedure call.
The left hand side may also represent a procedure
variable.
*/
}
else {
node_error(left, "procedure, type, or function expected");
left->nd_type = error_type;
}
}
return ChkProcCall(expp);
}
STATIC t_type *
ResultOfOperation(operator, tp)
t_type *tp;
{
/* Return the result type of the binary operation "operator",
with operand type "tp".
*/
switch(operator) {
case '=':
case '#':
case GREATEREQUAL:
case LESSEQUAL:
case '<':
case '>':
case IN:
return bool_type;
}
return tp;
}
#define Boolean(operator) (operator == OR || operator == AND)
STATIC int
AllowedTypes(operator)
{
/* Return a bit mask indicating the allowed operand types
for binary operator "operator".
*/
switch(operator) {
case '+':
case '-':
case '*':
return T_NUMERIC|T_SET;
case '/':
return T_REAL|T_SET;
case DIV:
case MOD:
return T_INTORCARD;
case OR:
case AND:
return T_ENUMERATION;
case '=':
case '#':
return T_POINTER|T_HIDDEN|T_SET|T_NUMERIC|T_ENUMERATION|T_CHAR;
case GREATEREQUAL:
case LESSEQUAL:
return T_SET|T_NUMERIC|T_CHAR|T_ENUMERATION;
case '<':
case '>':
return T_NUMERIC|T_CHAR|T_ENUMERATION;
default:
crash("(AllowedTypes)");
}
/*NOTREACHED*/
}
STATIC int
ChkAddressOper(tpl, tpr, expp)
register t_type *tpl, *tpr;
register t_node *expp;
{
/* Check that either "tpl" or "tpr" are both of type
address_type, or that one of them is, but the other is
of a cardinal type.
Also insert proper coercions, making sure that the EM pointer
arithmetic instructions can be generated whenever possible
*/
if (tpr == address_type && expp->nd_symb == '+') {
/* use the fact that '+' is a commutative operator */
t_type *tmptype = tpr;
t_node *tmpnode = expp->nd_right;
tpr = tpl;
expp->nd_right = expp->nd_left;
tpl = tmptype;
expp->nd_left = tmpnode;
}
if (tpl == address_type) {
expp->nd_type = address_type;
if (tpr == address_type) {
return 1;
}
if (tpr->tp_fund & T_CARDINAL) {
MkCoercion(&(expp->nd_right),
expp->nd_symb=='+' || expp->nd_symb=='-' ?
tpr :
address_type);
return 1;
}
return 0;
}
if (tpr == address_type && tpl->tp_fund & T_CARDINAL) {
expp->nd_type = address_type;
MkCoercion(&(expp->nd_left), address_type);
return 1;
}
return 0;
}
STATIC int
ChkBinOper(expp)
register t_node *expp;
{
/* Check a binary operation.
*/
register t_node *left = expp->nd_left, *right = expp->nd_right;
register t_type *tpl, *tpr;
t_type *result_type;
int allowed;
int retval;
/* First, check BOTH operands */
retval = ChkExpression(left) & ChkExpression(right);
tpl = BaseType(left->nd_type);
tpr = BaseType(right->nd_type);
if (tpl == intorcard_type) {
if (tpr == int_type || tpr == card_type) {
left->nd_type = tpl = tpr;
}
}
if (tpr == intorcard_type) {
if (tpl == int_type || tpl == card_type) {
right->nd_type = tpr = tpl;
}
}
expp->nd_type = result_type = ResultOfOperation(expp->nd_symb, tpr);
/* Check that the application of the operator is allowed on the type
of the operands.
There are three tricky parts:
- Boolean operators are only allowed on boolean operands, but
the "allowed-mask" of "AllowedTypes" can only indicate
an enumeration type.
- All operations that are allowed on CARDINALS are also allowed
on ADDRESS.
- The IN-operator has as right-hand-size operand a set.
*/
if (expp->nd_symb == IN) {
if (tpr->tp_fund != T_SET) {
return ex_error(expp, "right operand must be a set");
}
if (!TstAssCompat(ElementType(tpr), tpl)) {
/* Assignment compatible ???
I don't know! Should we be allowed to check
if a INTEGER is a member of a BITSET???
*/
node_error(left, "type incompatibility in IN");
return 0;
}
MkCoercion(&(expp->nd_left), word_type);
left = expp->nd_left;
if (left->nd_class == Value && right->nd_class == Set) {
cstset(expp);
}
return retval;
}
if (!retval) return 0;
allowed = AllowedTypes(expp->nd_symb);
if (!(tpr->tp_fund & allowed) || !(tpl->tp_fund & allowed)) {
if (!((T_CARDINAL & allowed) &&
ChkAddressOper(tpl, tpr, expp))) {
return ex_error(expp, "illegal operand type(s)");
}
if (result_type == bool_type) expp->nd_type = bool_type;
}
else {
if (Boolean(expp->nd_symb) && tpl != bool_type) {
return ex_error(expp, "illegal operand type(s)");
}
/* Operands must be compatible (distilled from Def 8.2)
*/
if (!TstCompat(tpr, tpl)) {
return ex_error(expp, "incompatible operand types");
}
MkCoercion(&(expp->nd_left), tpl);
MkCoercion(&(expp->nd_right), tpr);
}
if (tpl->tp_fund == T_SET) {
if (left->nd_class == Set && right->nd_class == Set) {
cstset(expp);
}
}
else if ( tpl->tp_fund != T_REAL &&
left->nd_class == Value && right->nd_class == Value) {
if (expp->nd_left->nd_type->tp_fund == T_INTEGER) {
cstibin(expp);
}
else cstubin(expp);
}
return 1;
}
STATIC int
ChkUnOper(expp)
register t_node *expp;
{
/* Check an unary operation.
*/
register t_node *right = expp->nd_right;
register t_type *tpr;
if (expp->nd_symb == COERCION) return 1;
if (expp->nd_symb == '(') {
*expp = *right;
free_node(right);
return ChkExpression(expp);
}
expp->nd_type = error_type;
if (! ChkExpression(right)) return 0;
expp->nd_type = tpr = BaseType(right->nd_type);
MkCoercion(&(expp->nd_right), tpr);
right = expp->nd_right;
if (tpr == address_type) tpr = card_type;
switch(expp->nd_symb) {
case '+':
if (!(tpr->tp_fund & T_NUMERIC)) break;
*expp = *right;
free_node(right);
return 1;
case '-':
if (tpr->tp_fund == T_INTORCARD || tpr->tp_fund == T_INTEGER) {
if (tpr == intorcard_type) {
expp->nd_type = int_type;
}
if (right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
else if (tpr->tp_fund == T_REAL) {
if (right->nd_class == Value) {
*expp = *right;
if (*(expp->nd_REL) == '-') (expp->nd_REL)++;
else (expp->nd_REL)--;
FreeNode(right);
}
return 1;
}
break;
case NOT:
if (tpr == bool_type) {
if (right->nd_class == Value) {
cstunary(expp);
}
return 1;
}
break;
default:
crash("ChkUnOper");
}
return ex_error(expp, "illegal operand type");
}
STATIC t_node *
getvariable(argp, edf, flags)
t_node **argp;
t_def *edf;
{
/* Get the next argument from argument list "argp".
It must obey the rules of "ChkVariable".
*/
register t_node *left = nextarg(argp, edf);
if (!left || !ChkVariable(left, flags)) return 0;
return left;
}
STATIC int
ChkStandard(expp)
register t_node *expp;
{
/* Check a call of a standard procedure or function
*/
t_node *arg = expp;
register t_node *left = expp->nd_left;
register t_def *edf = left->nd_def;
int free_it = 0;
assert(left->nd_class == Def);
expp->nd_type = error_type;
switch(edf->df_value.df_stdname) {
case S_ABS:
if (!(left = getarg(&arg, T_NUMERIC, 0, edf))) return 0;
expp->nd_type = BaseType(left->nd_type);
MkCoercion(&(arg->nd_left), expp->nd_type);
switch(expp->nd_type->tp_fund) {
case T_REAL:
break;
case T_INTEGER:
if (arg->nd_left->nd_class == Value) {
cstcall(expp,S_ABS);
}
break;
default:
free_it = 1;
break;
}
break;
case S_CAP:
expp->nd_type = char_type;
if (!(left = getarg(&arg, T_CHAR, 0, edf))) return 0;
if (left->nd_class == Value) cstcall(expp, S_CAP);
break;
case S_FLOATD:
case S_FLOAT:
if (! getarg(&arg, T_INTORCARD, 0, edf)) return 0;
if (edf->df_value.df_stdname == S_FLOAT) {
MkCoercion(&(arg->nd_left), card_type);
}
MkCoercion(&(arg->nd_left),
edf->df_value.df_stdname == S_FLOATD ?
longreal_type :
real_type);
free_it = 1;
break;
case S_SHORT:
case S_LONG: {
t_type *tp;
t_type *s1, *s2, *d1, *d2;
if (edf->df_value.df_stdname == S_SHORT) {
s1 = longint_type;
d1 = int_type;
s2 = longreal_type;
d2 = real_type;
}
else {
d1 = longint_type;
s1 = int_type;
d2 = longreal_type;
s2 = real_type;
}
if (!(left = getarg(&arg, 0, 0, edf))) {
return 0;
}
tp = BaseType(left->nd_type);
if (tp == s1) {
MkCoercion(&(arg->nd_left), d1);
}
else if (tp == s2) {
MkCoercion(&(arg->nd_left), d2);
}
else {
if (df_error(left, "unexpected parameter type", edf)) {
assert(0);
}
break;
}
free_it = 1;
break;
}
case S_HIGH:
if (!(left = getarg(&arg, T_ARRAY|T_STRING|T_CHAR, 0, edf))) {
return 0;
}
if (left->nd_type->tp_fund == T_ARRAY) {
expp->nd_type = IndexType(left->nd_type);
if (! IsConformantArray(left->nd_type)) {
left->nd_type = expp->nd_type;
cstcall(expp, S_MAX);
}
break;
}
if (left->nd_symb != STRING) {
return df_error(left,"array parameter expected", edf);
}
expp->nd_type = card_type;
expp->nd_class = Value;
/* Notice that we could disallow HIGH("") here by checking
that left->nd_type->tp_fund != T_CHAR || left->nd_INT != 0.
??? For the time being, we don't. !!!
Maybe the empty string should not be allowed at all.
*/
expp->nd_INT = left->nd_type->tp_fund == T_CHAR ? 0 :
left->nd_SLE - 1;
expp->nd_symb = INTEGER;
break;
case S_MAX:
case S_MIN:
if (!(left = getname(&arg, D_ISTYPE, T_DISCRETE, edf))) {
return 0;
}
expp->nd_type = left->nd_type;
cstcall(expp,edf->df_value.df_stdname);
break;
case S_ODD:
if (! (left = getarg(&arg, T_INTORCARD, 0, edf))) return 0;
MkCoercion(&(arg->nd_left), BaseType(left->nd_type));
expp->nd_type = bool_type;
if (arg->nd_left->nd_class == Value) cstcall(expp, S_ODD);
break;
case S_ORD:
if (! (left = getarg(&arg, T_NOSUB, 0, edf))) return 0;
MkCoercion(&(arg->nd_left), BaseType(left->nd_type));
expp->nd_type = card_type;
if (arg->nd_left->nd_class == Value) {
arg->nd_left->nd_type = card_type;
free_it = 1;
}
break;
#ifndef STRICT_3RD_ED
case S_NEW:
case S_DISPOSE:
{
static int warning_given = 0;
if (!warning_given) {
warning_given = 1;
if (! options['3'])
node_warning(expp, W_OLDFASHIONED, "NEW and DISPOSE are obsolete");
else
node_error(expp, "NEW and DISPOSE are obsolete");
}
}
left = getvariable(&arg,
edf,
edf->df_value.df_stdname == S_NEW ? D_DEFINED : D_USED);
expp->nd_type = 0;
if (! left) return 0;
if (! (left->nd_type->tp_fund == T_POINTER)) {
return df_error(left, "pointer variable expected", edf);
}
/* Now, make it look like a call to ALLOCATE or DEALLOCATE */
{
t_token dt;
t_node *nd;
dt.TOK_INT = PointedtoType(left->nd_type)->tp_size;
dt.tk_symb = INTEGER;
dt.tk_lineno = left->nd_lineno;
nd = MkLeaf(Value, &dt);
nd->nd_type = card_type;
dt.tk_symb = ',';
arg->nd_right = MkNode(Link, nd, NULLNODE, &dt);
/* Ignore other arguments to NEW and/or DISPOSE ??? */
dt.tk_symb = IDENT;
dt.tk_lineno = expp->nd_left->nd_lineno;
FreeNode(expp->nd_left);
dt.TOK_IDF = str2idf(edf->df_value.df_stdname==S_NEW ?
"ALLOCATE" : "DEALLOCATE", 0);
expp->nd_left = MkLeaf(Name, &dt);
}
return ChkCall(expp);
#endif
case S_TSIZE: /* ??? */
case S_SIZE:
expp->nd_type = intorcard_type;
if (!(left = getname(&arg,D_FIELD|D_VARIABLE|D_ISTYPE,0,edf))) {
return 0;
}
if (! IsConformantArray(left->nd_type)) cstcall(expp, S_SIZE);
#ifndef NOSTRICT
else node_warning(expp,
W_STRICT,
"%s on conformant array",
expp->nd_left->nd_def->df_idf->id_text);
#endif
break;
case S_TRUNCD:
case S_TRUNC:
if (! getarg(&arg, T_REAL, 0, edf)) return 0;
MkCoercion(&(arg->nd_left),
edf->df_value.df_stdname == S_TRUNCD ?
longint_type : card_type);
free_it = 1;
break;
case S_VAL:
if (!(left = getname(&arg, D_ISTYPE, T_NOSUB, edf))) {
return 0;
}
expp->nd_type = left->nd_def->df_type;
expp->nd_right = arg->nd_right;
arg->nd_right = 0;
FreeNode(arg);
arg = expp;
/* fall through */
case S_CHR:
if (! getarg(&arg, T_CARDINAL, 0, edf)) return 0;
if (edf->df_value.df_stdname == S_CHR) {
expp->nd_type = char_type;
}
if (expp->nd_type != int_type) {
MkCoercion(&(arg->nd_left), expp->nd_type);
free_it = 1;
}
break;
case S_ADR:
expp->nd_type = address_type;
if (! getarg(&arg, 0, 1, edf)) return 0;
break;
case S_DEC:
case S_INC:
expp->nd_type = 0;
if (! (left = getvariable(&arg, edf, D_USED|D_DEFINED))) return 0;
if (! (left->nd_type->tp_fund & T_DISCRETE)) {
return df_error(left,"illegal parameter type", edf);
}
if (arg->nd_right) {
if (! getarg(&arg, T_INTORCARD, 0, edf)) return 0;
}
break;
case S_HALT:
expp->nd_type = 0;
break;
case S_EXCL:
case S_INCL:
{
register t_type *tp;
t_node *dummy;
expp->nd_type = 0;
if (!(left = getvariable(&arg, edf, D_USED|D_DEFINED))) return 0;
tp = left->nd_type;
if (tp->tp_fund != T_SET) {
return df_error(arg, "SET parameter expected", edf);
}
if (!(dummy = getarg(&arg, 0, 0, edf))) return 0;
if (!ChkAssCompat(&dummy, ElementType(tp), "EXCL/INCL")) {
/* What type of compatibility do we want here?
apparently assignment compatibility! ??? ???
But we don't want the coercion in the tree, because
we don't want a range check here. We want a SET
error.
*/
return 0;
}
MkCoercion(&(arg->nd_left), word_type);
break;
}
default:
crash("(ChkStandard)");
}
if (arg->nd_right) {
return df_error(arg->nd_right, "too many parameters supplied", edf);
}
if (free_it) {
FreeNode(expp->nd_left);
*expp = *(arg->nd_left);
arg->nd_left = 0;
FreeNode(arg);
}
return 1;
}
STATIC int
ChkCast(expp)
register t_node *expp;
{
/* Check a cast and perform it if the argument is constant.
If the sizes don't match, only complain if at least one of them
has a size larger than the word size.
If both sizes are equal to or smaller than the word size, there
is no problem as such values take a word on the EM stack
anyway.
*/
register t_node *arg = expp->nd_right;
register t_type *lefttype = expp->nd_left->nd_type;
t_def *df = expp->nd_left->nd_def;
if ((! arg) || arg->nd_right) {
return df_error(expp, "type cast must have 1 parameter", df);
}
if (! ChkExpression(arg->nd_left)) return 0;
MkCoercion(&(arg->nd_left), BaseType(arg->nd_left->nd_type));
arg = arg->nd_left;
if (arg->nd_type->tp_size != lefttype->tp_size &&
(arg->nd_type->tp_size > word_size ||
lefttype->tp_size > word_size)) {
return df_error(expp, "unequal sizes in type cast", df);
}
if (IsConformantArray(arg->nd_type)) {
return df_error(expp,
"type transfer function on conformant array not supported",
df);
}
expp->nd_right->nd_left = 0;
FreeLR(expp);
if (arg->nd_class == Value) {
*expp = *arg;
free_node(arg);
}
else {
expp->nd_symb = CAST;
expp->nd_class = Uoper;
expp->nd_right = arg;
}
expp->nd_type = lefttype;
return 1;
}
TryToString(nd, tp)
register t_node *nd;
t_type *tp;
{
/* Try a coercion from character constant to string.
*/
static char buf[2];
assert(nd->nd_symb == STRING);
if (tp->tp_fund == T_ARRAY && nd->nd_type == char_type) {
buf[0] = nd->nd_INT;
nd->nd_type = standard_type(T_STRING, 1, (arith) 2);
nd->nd_token.tk_data.tk_str =
(struct string *) Malloc(sizeof(struct string));
nd->nd_STR = Salloc(buf, 2);
nd->nd_SLE = 1;
}
}
STATIC int
no_desig(expp)
t_node *expp;
{
node_error(expp, "designator expected");
return 0;
}
STATIC int
done_before()
{
return 1;
}
extern int NodeCrash();
int (*ExprChkTable[])() = {
#ifdef DEBUG
ChkValue,
#else
done_before,
#endif
ChkArr,
ChkBinOper,
ChkUnOper,
ChkArrow,
ChkFunCall,
ChkExLinkOrName,
NodeCrash,
ChkSet,
done_before,
NodeCrash,
ChkExLinkOrName,
};
int (*DesigChkTable[])() = {
no_desig,
ChkArr,
no_desig,
no_desig,
ChkArrow,
no_desig,
ChkLinkOrName,
NodeCrash,
no_desig,
done_before,
NodeCrash,
ChkLinkOrName,
};