138 lines
2.9 KiB
C
138 lines
2.9 KiB
C
/*
|
|
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
|
|
* See the copyright notice in the ACK home directory, in the file "Copyright".
|
|
*
|
|
* Author: Ceriel J.H. Jacobs
|
|
*/
|
|
|
|
/* $Header$ */
|
|
|
|
#include <math.h>
|
|
#include <errno.h>
|
|
|
|
static double
|
|
smallpos_gamma(x)
|
|
double x;
|
|
{
|
|
/* Approximation of gamma function using
|
|
gamma(x) = P(x-2) / Q(x-2) for x in [2,3]
|
|
*/
|
|
/* Hart & Cheney # 5251 */
|
|
|
|
static double p[11] = {
|
|
-0.2983543278574342138830437659e+06,
|
|
-0.2384953970018198872468734423e+06,
|
|
-0.1170494760121780688403854445e+06,
|
|
-0.3949445048301571936421824091e+05,
|
|
-0.1046699423827521405330650531e+05,
|
|
-0.2188218110071816359394795998e+04,
|
|
-0.3805112208641734657584922631e+03,
|
|
-0.5283123755635845383718978382e+02,
|
|
-0.6128571763704498306889428212e+01,
|
|
-0.5028018054416812467364198750e+00,
|
|
-0.3343060322330595274515660112e-01
|
|
};
|
|
|
|
static double q[9] = {
|
|
-0.2983543278574342138830438524e+06,
|
|
-0.1123558608748644911342306408e+06,
|
|
0.5332716689118142157485686311e+05,
|
|
0.8571160498907043851961147763e+04,
|
|
-0.4734865977028211706556819770e+04,
|
|
0.1960497612885585838997039621e+03,
|
|
0.1257733367869888645966647426e+03,
|
|
-0.2053126153100672764513929067e+02,
|
|
0.1000000000000000000000000000e+01
|
|
};
|
|
|
|
double result = 1.0;
|
|
|
|
while (x > 3) {
|
|
x -= 1.0;
|
|
result *= x;
|
|
}
|
|
while (x < 2) {
|
|
result /= x;
|
|
x += 1.0;
|
|
}
|
|
|
|
x -= 2.0;
|
|
|
|
return result * POLYNOM10(x, p) / POLYNOM8(x, q);
|
|
}
|
|
|
|
#define log_sqrt_2pi 0.91893853320467274178032973640561763
|
|
|
|
int signgam;
|
|
|
|
static double
|
|
bigpos_loggamma(x)
|
|
double x;
|
|
{
|
|
/* computes the log(gamma(x)) function for big arguments
|
|
using the Stirling form
|
|
log(gamma(x)) = (x - 0.5)log(x) - x + log(sqrt(2*pi)) + fi(x)
|
|
where fi(x) = (1/x)*P(1/(x*x))/Q(1/(x*x)) for x in [12,1000]
|
|
*/
|
|
/* Hart & Cheney # 5468 */
|
|
|
|
static double p[4] = {
|
|
0.12398282342474941538685913e+00,
|
|
0.67082783834332134961461700e+00,
|
|
0.64507302912892202513890000e+00,
|
|
0.66662907040200752600000000e-01
|
|
};
|
|
|
|
static double q[4] = {
|
|
0.14877938810969929846815600e+01,
|
|
0.80995271894897557472821400e+01,
|
|
0.79966911236636441947720000e+01,
|
|
0.10000000000000000000000000e+01
|
|
};
|
|
|
|
double rsq = 1.0/(x*x);
|
|
extern double log();
|
|
|
|
return (x-0.5)*log(x)-x+log_sqrt_2pi+POLYNOM3(rsq, p)/(x*POLYNOM3(rsq, q));
|
|
}
|
|
|
|
static double
|
|
neg_loggamma(x)
|
|
double x;
|
|
{
|
|
/* compute the log(gamma(x)) function for negative values of x,
|
|
using the rule:
|
|
-x*gamma(x)*gamma(-x) = pi/sin(z*pi)
|
|
*/
|
|
extern double sin(), log();
|
|
double sinpix;
|
|
|
|
x = -x;
|
|
sinpix = sin(M_PI * x);
|
|
if (sinpix == 0.0) {
|
|
errno = EDOM;
|
|
return HUGE;
|
|
}
|
|
if (sinpix < 0) sinpix = -sinpix;
|
|
else signgam = -1;
|
|
return log(M_PI/(x * smallpos_gamma(x) * sinpix));
|
|
}
|
|
|
|
double
|
|
gamma(x)
|
|
double x;
|
|
{
|
|
/* Wrong name; Actually computes log(gamma(x))
|
|
*/
|
|
extern double log();
|
|
|
|
signgam = 1;
|
|
if (x <= 0) {
|
|
return neg_loggamma(x);
|
|
}
|
|
if (x > 12.0) {
|
|
return bigpos_loggamma(x);
|
|
}
|
|
return log(smallpos_gamma(x));
|
|
}
|