576 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Modula-2
		
	
	
	
	
	
			
		
		
	
	
			576 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Modula-2
		
	
	
	
	
	
| (*
 | |
|   (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
 | |
|   See the copyright notice in the ACK home directory, in the file "Copyright".
 | |
| *)
 | |
| 
 | |
| (*$R-*)
 | |
| IMPLEMENTATION MODULE Mathlib;
 | |
| (*
 | |
|   Module:	Mathematical functions
 | |
|   Author:	Ceriel J.H. Jacobs
 | |
|   Version:	$Id$
 | |
| *)
 | |
| 
 | |
|   FROM	EM IMPORT	FIF, FEF;
 | |
|   FROM	Traps IMPORT	Message;
 | |
| 
 | |
|   CONST
 | |
| 	OneRadianInDegrees	= 57.295779513082320876798155D;
 | |
| 	OneDegreeInRadians	=  0.017453292519943295769237D;
 | |
| 	OneOverSqrt2		= 0.70710678118654752440084436210484904D;
 | |
| 
 | |
|   (* basic functions *)
 | |
| 
 | |
|   PROCEDURE pow(x: REAL; i: INTEGER): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longpow(LONG(x), i));
 | |
|   END pow;
 | |
| 
 | |
|   PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
 | |
|     VAR	val: LONGREAL;
 | |
| 	ri: LONGREAL;
 | |
|   BEGIN
 | |
| 	ri := FLOATD(i);
 | |
| 	IF x < 0.0D THEN
 | |
| 		val := longexp(longln(-x) * ri);
 | |
| 		IF ODD(i) THEN RETURN -val;
 | |
| 		ELSE RETURN val;
 | |
| 		END;
 | |
| 	ELSIF x = 0.0D THEN
 | |
| 		RETURN 0.0D;
 | |
| 	ELSE
 | |
| 		RETURN longexp(longln(x) * ri);
 | |
| 	END;
 | |
|   END longpow;
 | |
| 
 | |
|   PROCEDURE sqrt(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsqrt(LONG(x)));
 | |
|   END sqrt;
 | |
| 
 | |
|   PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
 | |
|     VAR
 | |
| 	temp: LONGREAL;
 | |
| 	exp, i: INTEGER;
 | |
|   BEGIN
 | |
| 	IF x <= 0.0D THEN
 | |
| 		IF x < 0.0D THEN
 | |
| 			Message("sqrt: negative argument");
 | |
| 			HALT
 | |
| 		END;
 | |
| 		RETURN 0.0D;
 | |
| 	END;
 | |
| 	temp := FEF(x,exp);
 | |
| 	(*
 | |
| 	 * NOTE
 | |
| 	 * this wont work on 1's comp
 | |
| 	 *)
 | |
| 	IF ODD(exp) THEN
 | |
| 		temp := 2.0D * temp;
 | |
| 		DEC(exp);
 | |
| 	END;
 | |
| 	temp := 0.5D*(1.0D + temp);
 | |
| 
 | |
| 	WHILE exp > 28 DO
 | |
| 		temp := temp * 16384.0D;
 | |
| 		exp := exp - 28;
 | |
| 	END;
 | |
| 	WHILE exp < -28 DO
 | |
| 		temp := temp / 16384.0D;
 | |
| 		exp := exp + 28;
 | |
| 	END;
 | |
| 	WHILE exp >= 2 DO
 | |
| 		temp := temp * 2.0D;
 | |
| 		exp := exp - 2;
 | |
| 	END;
 | |
| 	WHILE exp <= -2 DO
 | |
| 		temp := temp / 2.0D;
 | |
| 		exp := exp + 2;
 | |
| 	END;
 | |
| 	FOR i := 0 TO 5 DO
 | |
| 		temp := 0.5D*(temp + x/temp);
 | |
| 	END;
 | |
| 	RETURN temp;
 | |
|   END longsqrt;
 | |
| 
 | |
|   PROCEDURE ldexp(x:LONGREAL; n: INTEGER): LONGREAL;
 | |
|   BEGIN
 | |
| 	WHILE n >= 16 DO
 | |
| 		x := x * 65536.0D;
 | |
| 		n := n - 16;
 | |
| 	END;
 | |
| 	WHILE n > 0 DO
 | |
| 		x := x * 2.0D;
 | |
| 		DEC(n);
 | |
| 	END;
 | |
| 	WHILE n <= -16 DO
 | |
| 		x := x / 65536.0D;
 | |
| 		n := n + 16;
 | |
| 	END;
 | |
| 	WHILE n < 0 DO
 | |
| 		x := x / 2.0D;
 | |
| 		INC(n);
 | |
| 	END;
 | |
| 	RETURN x;
 | |
|   END ldexp;
 | |
| 
 | |
|   PROCEDURE exp(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longexp(LONG(x)));
 | |
|   END exp;
 | |
| 
 | |
|   PROCEDURE longexp(x: LONGREAL): LONGREAL;
 | |
|   (*	Algorithm and coefficients from:
 | |
| 		"Software manual for the elementary functions"
 | |
| 		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
|   *)
 | |
|     CONST
 | |
| 	p0 = 0.25000000000000000000D+00;
 | |
| 	p1 = 0.75753180159422776666D-02;
 | |
| 	p2 = 0.31555192765684646356D-04;
 | |
| 	q0 = 0.50000000000000000000D+00;
 | |
| 	q1 = 0.56817302698551221787D-01;
 | |
| 	q2 = 0.63121894374398503557D-03;
 | |
| 	q3 = 0.75104028399870046114D-06;
 | |
| 
 | |
|     VAR
 | |
| 	neg: BOOLEAN;
 | |
| 	n: INTEGER;
 | |
| 	xn, g, x1, x2: LONGREAL;
 | |
|   BEGIN
 | |
| 	neg := x < 0.0D;
 | |
| 	IF neg THEN
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	n := TRUNC(x/longln2 + 0.5D);
 | |
| 	xn := FLOATD(n);
 | |
| 	x1 := FLOATD(TRUNCD(x));
 | |
| 	x2 := x - x1;
 | |
| 	g := ((x1 - xn * 0.693359375D)+x2) - xn * (-2.1219444005469058277D-4);
 | |
| 	IF neg THEN
 | |
| 		g := -g;
 | |
| 		n := -n;
 | |
| 	END;
 | |
| 	xn := g*g;
 | |
| 	x := g*((p2*xn+p1)*xn+p0);
 | |
| 	INC(n);
 | |
| 	RETURN ldexp(0.5D + x/((((q3*xn+q2)*xn+q1)*xn+q0) - x), n);
 | |
|   END longexp;
 | |
| 
 | |
|   PROCEDURE ln(x: REAL): REAL;	(* natural log *)
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longln(LONG(x)));
 | |
|   END ln;
 | |
| 
 | |
|   PROCEDURE longln(x: LONGREAL): LONGREAL;	(* natural log *)
 | |
|   (*	Algorithm and coefficients from:
 | |
| 		"Software manual for the elementary functions"
 | |
| 		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
|    *)
 | |
|     CONST
 | |
| 	p0 = -0.64124943423745581147D+02;
 | |
| 	p1 =  0.16383943563021534222D+02;
 | |
| 	p2 = -0.78956112887491257267D+00;
 | |
| 	q0 = -0.76949932108494879777D+03;
 | |
| 	q1 =  0.31203222091924532844D+03;
 | |
| 	q2 = -0.35667977739034646171D+02;
 | |
| 	q3 =  1.0D;
 | |
|     VAR
 | |
| 	exp: INTEGER;
 | |
| 	z, znum, zden, w: LONGREAL;
 | |
| 
 | |
|   BEGIN
 | |
| 	IF x <= 0.0D THEN
 | |
| 		Message("ln: argument <= 0");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	x := FEF(x, exp);
 | |
| 	IF x > OneOverSqrt2 THEN
 | |
| 		znum := (x - 0.5D) - 0.5D;
 | |
| 		zden := x * 0.5D + 0.5D;
 | |
| 	ELSE
 | |
| 		znum := x - 0.5D;
 | |
| 		zden := znum * 0.5D + 0.5D;
 | |
| 		DEC(exp);
 | |
| 	END;
 | |
| 	z := znum / zden;
 | |
| 	w := z * z;
 | |
| 	x := z + z * w * (((p2*w+p1)*w+p0)/(((q3*w+q2)*w+q1)*w+q0));
 | |
| 	z := FLOATD(exp);
 | |
| 	x := x + z * (-2.121944400546905827679D-4);
 | |
| 	RETURN x + z * 0.693359375D;
 | |
|   END longln;
 | |
| 
 | |
|   PROCEDURE log(x: REAL): REAL;	(* log with base 10 *)
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longlog(LONG(x)));
 | |
|   END log;
 | |
| 
 | |
|   PROCEDURE longlog(x: LONGREAL): LONGREAL;	(* log with base 10 *)
 | |
|   BEGIN
 | |
| 	RETURN longln(x)/longln10;
 | |
|   END longlog;
 | |
| 
 | |
|   (* trigonometric functions; arguments in radians *)
 | |
| 
 | |
|   PROCEDURE sin(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsin(LONG(x)));
 | |
|   END sin;
 | |
| 
 | |
|   PROCEDURE sinus(x: LONGREAL; cosflag: BOOLEAN) : LONGREAL;
 | |
|   (*	Algorithm and coefficients from:
 | |
| 		"Software manual for the elementary functions"
 | |
| 		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
|   *)
 | |
|     CONST
 | |
| 	r0 = -0.16666666666666665052D+00;
 | |
| 	r1 =  0.83333333333331650314D-02;
 | |
| 	r2 = -0.19841269841201840457D-03;
 | |
| 	r3 =  0.27557319210152756119D-05;
 | |
| 	r4 = -0.25052106798274584544D-07;
 | |
| 	r5 =  0.16058936490371589114D-09;
 | |
| 	r6 = -0.76429178068910467734D-12;
 | |
| 	r7 =  0.27204790957888846175D-14;
 | |
| 	A1 =  3.1416015625D;
 | |
| 	A2 = -8.908910206761537356617D-6;
 | |
|     VAR
 | |
| 	x1, x2, y : LONGREAL;
 | |
| 	neg : BOOLEAN;
 | |
|   BEGIN
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := TRUE;
 | |
| 		x := -x
 | |
| 	ELSE	neg := FALSE
 | |
| 	END;
 | |
| 	IF cosflag THEN
 | |
| 		neg := FALSE;
 | |
| 		y := longhalfpi + x
 | |
| 	ELSE
 | |
| 		y := x
 | |
| 	END;
 | |
| 	y := y / longpi + 0.5D;
 | |
| 
 | |
| 	IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
 | |
| 	IF FIF(y, 0.5D, x1) # 0.0D THEN neg := NOT neg END;
 | |
| 	IF cosflag THEN y := y - 0.5D END;
 | |
| 	x2 := FIF(x, 1.0, x1);
 | |
| 	x := x1 - y * A1;
 | |
| 	x := x + x2;
 | |
| 	x := x - y * A2;
 | |
| 
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := NOT neg;
 | |
| 		x := -x
 | |
| 	END;
 | |
| 	y := x * x;
 | |
| 	x := x + x * y * (((((((r7*y+r6)*y+r5)*y+r4)*y+r3)*y+r2)*y+r1)*y+r0);
 | |
| 	IF neg THEN RETURN -x END;
 | |
| 	RETURN x;
 | |
|   END sinus;
 | |
| 
 | |
|   PROCEDURE longsin(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN sinus(x, FALSE);
 | |
|   END longsin;
 | |
| 
 | |
|   PROCEDURE cos(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longcos(LONG(x)));
 | |
|   END cos;
 | |
| 
 | |
|   PROCEDURE longcos(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF x < 0.0D THEN x := -x; END;
 | |
| 	RETURN sinus(x, TRUE);	
 | |
|   END longcos;
 | |
| 
 | |
|   PROCEDURE tan(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longtan(LONG(x)));
 | |
|   END tan;
 | |
| 
 | |
|   PROCEDURE longtan(x: LONGREAL): LONGREAL;
 | |
|   (*	Algorithm and coefficients from:
 | |
| 		"Software manual for the elementary functions"
 | |
| 		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
|   *)
 | |
| 
 | |
|     CONST
 | |
| 	p1 = -0.13338350006421960681D+00;
 | |
| 	p2 =  0.34248878235890589960D-02;
 | |
| 	p3 = -0.17861707342254426711D-04;
 | |
| 
 | |
| 	q0 =  1.0D;
 | |
| 	q1 = -0.46671683339755294240D+00;
 | |
| 	q2 =  0.25663832289440112864D-01;
 | |
| 	q3 = -0.31181531907010027307D-03;
 | |
| 	q4 =  0.49819433993786512270D-06;
 | |
| 
 | |
| 	A1 =  1.57080078125D;
 | |
| 	A2 = -4.454455103380768678308D-06;
 | |
| 
 | |
|     VAR y, x1, x2: LONGREAL;
 | |
| 	negative: BOOLEAN;
 | |
| 	invert: BOOLEAN;
 | |
|   BEGIN
 | |
| 	negative := x < 0.0D;
 | |
| 	y := x / longhalfpi + 0.5D;
 | |
| 
 | |
|         (*      Use extended precision to calculate reduced argument.
 | |
|                 Here we used 12 bits of the mantissa for a1.
 | |
|                 Also split x in integer part x1 and fraction part x2.
 | |
|         *)
 | |
| 	IF FIF(y, 1.0D, y) < 0.0D THEN ; END;
 | |
| 	invert := FIF(y, 0.5D, x1) # 0.0D;
 | |
| 	x2 := FIF(x, 1.0D, x1);
 | |
| 	x := x1 - y * A1;
 | |
| 	x := x + x2;
 | |
| 	x := x - y * A2;
 | |
| 
 | |
| 	y := x * x;
 | |
| 	x := x + x * y * ((p3*y+p2)*y+p1);
 | |
| 	y := (((q4*y+q3)*y+q2)*y+q1)*y+q0;
 | |
| 	IF negative THEN x := -x END;
 | |
| 	IF invert THEN RETURN -y/x END;
 | |
| 	RETURN x/y;
 | |
|   END longtan;
 | |
| 
 | |
|   PROCEDURE arcsin(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarcsin(LONG(x)));
 | |
|   END arcsin;
 | |
| 
 | |
|   PROCEDURE arcsincos(x: LONGREAL; cosfl: BOOLEAN): LONGREAL;
 | |
|     CONST
 | |
| 	p0 = -0.27368494524164255994D+02;
 | |
| 	p1 =  0.57208227877891731407D+02;
 | |
| 	p2 = -0.39688862997540877339D+02;
 | |
| 	p3 =  0.10152522233806463645D+02;
 | |
| 	p4 = -0.69674573447350646411D+00;
 | |
| 
 | |
| 	q0 = -0.16421096714498560795D+03;
 | |
| 	q1 =  0.41714430248260412556D+03;
 | |
| 	q2 = -0.38186303361750149284D+03;
 | |
| 	q3 =  0.15095270841030604719D+03;
 | |
| 	q4 = -0.23823859153670238830D+02;
 | |
| 	q5 =  1.0D;
 | |
|     VAR
 | |
| 	negative : BOOLEAN;
 | |
| 	big: BOOLEAN;
 | |
| 	g: LONGREAL;
 | |
|   BEGIN
 | |
| 	negative := x < 0.0D;
 | |
| 	IF negative THEN x := -x; END;
 | |
| 	IF x > 0.5D THEN
 | |
| 		big := TRUE;
 | |
| 		IF x > 1.0D THEN
 | |
| 			Message("arcsin or arccos: argument > 1");
 | |
| 			HALT
 | |
| 		END;
 | |
| 		g := 0.5D - 0.5D * x;
 | |
| 		x := -longsqrt(g);
 | |
| 		x := x + x;
 | |
| 	ELSE
 | |
| 		big := FALSE;
 | |
| 		g := x * x;
 | |
| 	END;
 | |
| 	x := x + x * g *
 | |
| 	  ((((p4*g+p3)*g+p2)*g+p1)*g+p0)/(((((q5*g+q4)*g+q3)*g+q2)*g+q1)*g+q0);
 | |
| 	IF cosfl AND NOT negative THEN x := -x END;
 | |
| 	IF cosfl = NOT big THEN
 | |
| 		x := (x + longquartpi) + longquartpi;
 | |
| 	ELSIF cosfl AND negative AND big THEN
 | |
| 		x := (x + longhalfpi) + longhalfpi;
 | |
| 	END;
 | |
| 	IF negative AND NOT cosfl THEN x := -x END;
 | |
| 	RETURN x;
 | |
|   END arcsincos;	
 | |
| 
 | |
|   PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN arcsincos(x, FALSE);
 | |
|   END longarcsin;
 | |
| 
 | |
|   PROCEDURE arccos(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarccos(LONG(x)));
 | |
|   END arccos;
 | |
| 
 | |
|   PROCEDURE longarccos(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN arcsincos(x, TRUE);
 | |
|   END longarccos;
 | |
| 
 | |
|   PROCEDURE arctan(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarctan(LONG(x)));
 | |
|   END arctan;
 | |
| 
 | |
|   VAR A: ARRAY[0..3] OF LONGREAL;
 | |
|       arctaninit: BOOLEAN;
 | |
| 
 | |
|   PROCEDURE longarctan(x: LONGREAL): LONGREAL;
 | |
|   (*	Algorithm and coefficients from:
 | |
| 		"Software manual for the elementary functions"
 | |
| 		by W.J. Cody and W. Waite, Prentice-Hall, 1980
 | |
|   *)
 | |
|     CONST
 | |
| 	p0 = -0.13688768894191926929D+02;
 | |
| 	p1 = -0.20505855195861651981D+02;
 | |
| 	p2 = -0.84946240351320683534D+01;
 | |
| 	p3 = -0.83758299368150059274D+00;
 | |
| 	q0 =  0.41066306682575781263D+02;
 | |
| 	q1 =  0.86157349597130242515D+02;
 | |
| 	q2 =  0.59578436142597344465D+02;
 | |
| 	q3 =  0.15024001160028576121D+02;
 | |
| 	q4 =  1.0D;
 | |
|     VAR
 | |
| 	g: LONGREAL;
 | |
| 	neg: BOOLEAN;
 | |
| 	n: INTEGER;
 | |
|   BEGIN
 | |
| 	IF NOT arctaninit THEN
 | |
| 		arctaninit := TRUE;
 | |
| 		A[0] := 0.0D;
 | |
| 		A[1] := 0.52359877559829887307710723554658381D;	(* p1/6 *)
 | |
| 		A[2] := longhalfpi;
 | |
| 		A[3] := 1.04719755119659774615421446109316763D; (* pi/3 *)
 | |
| 	END;
 | |
| 	neg := FALSE;
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := TRUE;
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	IF x > 1.0D THEN
 | |
| 		x := 1.0D/x;
 | |
| 		n := 2
 | |
| 	ELSE
 | |
| 		n := 0
 | |
| 	END;
 | |
| 	IF x > 0.26794919243112270647D (* 2-sqrt(3) *) THEN
 | |
| 		INC(n);
 | |
| 		x := (((0.73205080756887729353D*x-0.5D)-0.5D)+x)/
 | |
| 			(1.73205080756887729353D + x);
 | |
| 	END;
 | |
| 	g := x*x;
 | |
| 	x := x + x * g * (((p3*g+p2)*g+p1)*g+p0) / ((((q4*g+q3)*g+q2)*g+q1)*g+q0);
 | |
| 	IF n > 1 THEN x := -x END;
 | |
| 	x := x + A[n];
 | |
| 	IF neg THEN RETURN -x; END;
 | |
| 	RETURN x;
 | |
|   END longarctan;
 | |
| 
 | |
|   (* hyperbolic functions *)
 | |
|   (* The C math library has better implementations for some of these, but
 | |
|      they depend on some properties of the floating point implementation,
 | |
|      and, for now, we don't want that in the Modula-2 system.
 | |
|   *)
 | |
| 
 | |
|   PROCEDURE sinh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longsinh(LONG(x)));
 | |
|   END sinh;
 | |
| 
 | |
|   PROCEDURE longsinh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx - 1.0D/expx)/2.0D;
 | |
|   END longsinh;
 | |
| 
 | |
|   PROCEDURE cosh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longcosh(LONG(x)));
 | |
|   END cosh;
 | |
| 
 | |
|   PROCEDURE longcosh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx + 1.0D/expx)/2.0D;
 | |
|   END longcosh;
 | |
| 
 | |
|   PROCEDURE tanh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longtanh(LONG(x)));
 | |
|   END tanh;
 | |
| 
 | |
|   PROCEDURE longtanh(x: LONGREAL): LONGREAL;
 | |
|     VAR expx: LONGREAL;
 | |
|   BEGIN
 | |
| 	expx := longexp(x);
 | |
| 	RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
 | |
|   END longtanh;
 | |
| 
 | |
|   PROCEDURE arcsinh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarcsinh(LONG(x)));
 | |
|   END arcsinh;
 | |
| 
 | |
|   PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
 | |
|     VAR neg: BOOLEAN;
 | |
|   BEGIN
 | |
| 	neg := FALSE;
 | |
| 	IF x < 0.0D THEN
 | |
| 		neg := TRUE;
 | |
| 		x := -x;
 | |
| 	END;
 | |
| 	x := longln(x + longsqrt(x*x+1.0D));
 | |
| 	IF neg THEN RETURN -x; END;
 | |
| 	RETURN x;
 | |
|   END longarcsinh;
 | |
| 
 | |
|   PROCEDURE arccosh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarccosh(LONG(x)));
 | |
|   END arccosh;
 | |
| 
 | |
|   PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF x < 1.0D THEN
 | |
| 		Message("arccosh: argument < 1");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	RETURN longln(x + longsqrt(x*x - 1.0D));
 | |
|   END longarccosh;
 | |
| 
 | |
|   PROCEDURE arctanh(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longarctanh(LONG(x)));
 | |
|   END arctanh;
 | |
| 
 | |
|   PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	IF (x <= -1.0D) OR (x >= 1.0D) THEN
 | |
| 		Message("arctanh: ABS(argument) >= 1");
 | |
| 		HALT
 | |
| 	END;
 | |
| 	RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
 | |
|   END longarctanh;
 | |
| 
 | |
|   (* conversions *)
 | |
| 
 | |
|   PROCEDURE RadianToDegree(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longRadianToDegree(LONG(x)));
 | |
|   END RadianToDegree;
 | |
| 
 | |
|   PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN x * OneRadianInDegrees;
 | |
|   END longRadianToDegree;
 | |
| 
 | |
|   PROCEDURE DegreeToRadian(x: REAL): REAL;
 | |
|   BEGIN
 | |
| 	RETURN SHORT(longDegreeToRadian(LONG(x)));
 | |
|   END DegreeToRadian;
 | |
| 
 | |
|   PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
 | |
|   BEGIN
 | |
| 	RETURN x * OneDegreeInRadians;
 | |
|   END longDegreeToRadian;
 | |
| 
 | |
| BEGIN
 | |
| 	arctaninit := FALSE;
 | |
| END Mathlib.
 |