ack/lang/m2/comp/declar.g
1986-04-17 09:28:09 +00:00

579 lines
12 KiB
Plaintext

/* D E C L A R A T I O N S */
{
static char *RcsId = "$Header$";
#include <em_arith.h>
#include <em_label.h>
#include <alloc.h>
#include <assert.h>
#include "idf.h"
#include "LLlex.h"
#include "def.h"
#include "type.h"
#include "scope.h"
#include "node.h"
#include "misc.h"
static int proclevel = 0; /* nesting level of procedures */
}
ProcedureDeclaration
{
struct def *df;
} :
ProcedureHeading(&df, D_PROCEDURE)
{ df->prc_level = proclevel++;
}
';' block(&(df->prc_body)) IDENT
{ match_id(dot.TOK_IDF, df->df_idf);
df->prc_scope = CurrentScope;
close_scope(SC_CHKFORW);
proclevel--;
}
;
ProcedureHeading(struct def **pdf; int type;)
{
struct type *tp = 0;
struct type *tp1 = 0;
struct paramlist *params = 0;
register struct def *df;
} :
PROCEDURE IDENT
{ assert(type & (D_PROCEDURE | D_PROCHEAD));
if (type == D_PROCHEAD) {
df = define(dot.TOK_IDF, CurrentScope, type);
df->for_node = MkNode(Name, NULLNODE, NULLNODE, &dot);
}
else {
df = lookup(dot.TOK_IDF, CurrentScope);
if (df && df->df_kind == D_PROCHEAD) {
df->df_kind = type;
tp1 = df->df_type;
}
else df = define(dot.TOK_IDF, CurrentScope, type);
df->prc_nbpar = 0;
open_scope(OPENSCOPE);
}
}
FormalParameters(type == D_PROCEDURE, &params, &tp, &(df->prc_nbpar))?
{
df->df_type = tp = construct_type(T_PROCEDURE, tp);
tp->prc_params = params;
if (tp1 && !TstTypeEquiv(tp, tp1)) {
error("inconsistent procedure declaration for \"%s\"", df->df_idf->id_text);
}
*pdf = df;
}
;
block(struct node **pnd;)
{
}:
declaration*
[
BEGIN
StatementSequence(pnd)
|
{ *pnd = 0; }
]
END
;
declaration:
CONST [ ConstantDeclaration ';' ]*
|
TYPE [ TypeDeclaration ';' ]*
|
VAR [ VariableDeclaration ';' ]*
|
ProcedureDeclaration ';'
|
ModuleDeclaration ';'
;
FormalParameters(int doparams;
struct paramlist **pr;
struct type **tp;
arith *parmaddr;)
{
struct def *df;
register struct paramlist *pr1;
} :
'('
[
FPSection(doparams, pr, parmaddr)
{ pr1 = *pr; }
[
{ for (; pr1->next; pr1 = pr1->next) ; }
';' FPSection(doparams, &(pr1->next), parmaddr)
]*
]?
')'
{ *tp = 0; }
[ ':' qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
{ *tp = df->df_type; }
]?
;
/* In the next nonterminal, "doparams" is a flag indicating whether
the identifiers representing the parameters must be added to the
symbol table. We must not do so when reading a Definition Module,
because in this case we only read the header. The Implementation
might contain different identifiers representing the same paramters.
*/
FPSection(int doparams; struct paramlist **ppr; arith *addr;)
{
struct node *FPList;
struct paramlist *ParamList();
struct type *tp;
int VARp = 0;
} :
[
VAR { VARp = 1; }
]?
IdentList(&FPList) ':' FormalType(&tp)
{
if (doparams) {
EnterIdList(FPList, D_VARIABLE, VARp,
tp, CurrentScope, addr);
}
*ppr = ParamList(FPList, tp, VARp);
FreeNode(FPList);
}
;
FormalType(struct type **tp;)
{
struct def *df;
int ARRAYflag = 0;
} :
[ ARRAY OF { ARRAYflag = 1; }
]?
qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
{ if (ARRAYflag) {
*tp = construct_type(T_ARRAY, NULLTYPE);
(*tp)->arr_elem = df->df_type;
(*tp)->tp_align = lcm(word_align, pointer_align);
(*tp)->tp_size = align(pointer_size + 3*word_size,
(*tp)->tp_align);
}
else *tp = df->df_type;
}
;
TypeDeclaration
{
struct def *df;
struct type *tp;
}:
IDENT { df = define(dot.TOK_IDF, CurrentScope, D_TYPE); }
'=' type(&tp)
{ df->df_type = tp;
if ((df->df_flags&D_EXPORTED) &&
tp->tp_fund == T_ENUMERATION) {
exprt_literals(tp->enm_enums,
enclosing(CurrentScope));
}
if (df->df_kind == D_HTYPE &&
tp->tp_fund != T_POINTER) {
error("Opaque type \"%s\" is not a pointer type", df->df_idf->id_text);
}
}
;
type(struct type **ptp;):
SimpleType(ptp)
|
ArrayType(ptp)
|
RecordType(ptp)
|
SetType(ptp)
|
PointerType(ptp)
|
ProcedureType(ptp)
;
SimpleType(struct type **ptp;)
{
struct def *df;
} :
qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
[
/* nothing */
{ *ptp = df->df_type; }
|
SubrangeType(ptp)
/* The subrange type is given a base type by the
qualident (this is new modula-2).
*/
{
chk_basesubrange(*ptp, df->df_type);
}
]
|
enumeration(ptp)
|
SubrangeType(ptp)
;
enumeration(struct type **ptp;)
{
struct node *EnumList;
} :
'(' IdentList(&EnumList) ')'
{
*ptp = standard_type(T_ENUMERATION, 1, (arith) 1);
EnterIdList(EnumList, D_ENUM, 0, *ptp,
CurrentScope, (arith *) 0);
FreeNode(EnumList);
if ((*ptp)->enm_ncst > 256) {
if (word_size == 1) {
error("Too many enumeration literals");
}
else {
(*ptp)->tp_size = word_size;
(*ptp)->tp_align = word_align;
}
}
}
;
IdentList(struct node **p;)
{
register struct node *q;
} :
IDENT { q = MkNode(Value, NULLNODE, NULLNODE, &dot);
*p = q;
}
[
',' IDENT
{ q->next = MkNode(Value,NULLNODE,NULLNODE,&dot);
q = q->next;
}
]*
{ q->next = 0; }
;
SubrangeType(struct type **ptp;)
{
struct node *nd1, *nd2;
}:
/*
This is not exactly the rule in the new report, but see
the rule for "SimpleType".
*/
'[' ConstExpression(&nd1)
UPTO ConstExpression(&nd2)
']'
{ *ptp = subr_type(nd1, nd2); }
;
ArrayType(struct type **ptp;)
{
struct type *tp;
register struct type *tp2;
} :
ARRAY SimpleType(&tp)
{
*ptp = tp2 = construct_type(T_ARRAY, tp);
}
[
',' SimpleType(&tp)
{ tp2 = tp2->arr_elem =
construct_type(T_ARRAY, tp);
}
]* OF type(&tp)
{ tp2->arr_elem = tp;
ArraySizes(*ptp);
}
;
RecordType(struct type **ptp;)
{
struct scope *scope;
arith count;
int xalign = struct_align;
}
:
RECORD
{ open_scope(OPENSCOPE);
scope = CurrentScope;
close_scope(0);
count = 0;
}
FieldListSequence(scope, &count, &xalign)
{
*ptp = standard_type(T_RECORD, xalign, count);
(*ptp)->rec_scope = scope;
}
END
;
FieldListSequence(struct scope *scope; arith *cnt; int *palign;):
FieldList(scope, cnt, palign)
[
';' FieldList(scope, cnt, palign)
]*
;
FieldList(struct scope *scope; arith *cnt; int *palign;)
{
struct node *FldList;
struct idf *id;
struct def *df;
struct type *tp;
struct node *nd;
arith tcnt, max;
} :
[
IdentList(&FldList) ':' type(&tp)
{ *palign = lcm(*palign, tp->tp_align);
EnterIdList(FldList, D_FIELD, 0, tp, scope, cnt);
FreeNode(FldList);
}
|
CASE
/* Also accept old fashioned Modula-2 syntax, but give a warning
*/
[ qualident(0, &df, (char *) 0, &nd)
[ /* This is good, in both kinds of Modula-2, if
the first qualident is a single identifier.
*/
{ if (nd->nd_class != Name) {
error("illegal variant tag");
id = gen_anon_idf();
}
else id = nd->nd_IDF;
}
':' qualident(D_TYPE|D_HTYPE|D_HIDDEN,
&df, "type", (struct node **) 0)
|
/* Old fashioned! the first qualident now represents
the type
*/
{ warning("Old fashioned Modula-2 syntax!");
id = gen_anon_idf();
findname(nd);
assert(nd->nd_class == Def);
df = nd->nd_def;
if (!(df->df_kind &
(D_ERROR|D_TYPE|D_HTYPE|D_HIDDEN))) {
error("identifier \"%s\" is not a type",
df->df_idf->id_text);
}
FreeNode(nd);
}
]
|
/* Aha, third edition? */
':' qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
{ id = gen_anon_idf(); }
]
{ tp = df->df_type;
df = define(id, scope, D_FIELD);
df->df_type = tp;
df->fld_off = align(*cnt, tp->tp_align);
*cnt = tcnt = df->fld_off + tp->tp_size;
}
OF variant(scope, &tcnt, tp, palign)
{ max = tcnt; tcnt = *cnt; }
[
'|' variant(scope, &tcnt, tp, palign)
{ if (tcnt > max) max = tcnt; }
]*
[ ELSE FieldListSequence(scope, &tcnt, palign)
{ if (tcnt > max) max = tcnt; }
]?
END
{ *cnt = max; }
]?
;
variant(struct scope *scope; arith *cnt; struct type *tp; int *palign;)
{
struct type *tp1 = tp;
struct node *nd;
} :
[
CaseLabelList(&tp1, &nd)
{ /* Ignore the cases for the time being.
Maybe a checking version will be supplied
later ???
*/
FreeNode(nd);
}
':' FieldListSequence(scope, cnt, palign)
]?
/* Changed rule in new modula-2 */
;
CaseLabelList(struct type **ptp; struct node **pnd;):
CaseLabels(ptp, pnd)
[
{ *pnd = MkNode(Link, *pnd, NULLNODE, &dot); }
',' CaseLabels(ptp, &((*pnd)->nd_right))
{ pnd = &((*pnd)->nd_right); }
]*
;
CaseLabels(struct type **ptp; struct node **pnd;)
{
struct node *nd1, *nd2 = 0;
}:
ConstExpression(&nd1) { *pnd = nd1; }
[
UPTO { *pnd = MkNode(Link,nd1,NULLNODE,&dot); }
ConstExpression(&nd2)
{ if (!TstCompat(nd1->nd_type, nd2->nd_type)) {
node_error(nd2,"type incompatibility in case label");
}
nd1->nd_type = error_type;
(*pnd)->nd_right = nd2;
}
]?
{ if (*ptp != 0 &&
!TstCompat(*ptp, nd1->nd_type)) {
node_error(nd1,"type incompatibility in case label");
}
*ptp = nd1->nd_type;
}
;
SetType(struct type **ptp;)
{
struct type *tp;
} :
SET OF SimpleType(&tp)
{
*ptp = set_type(tp);
}
;
/* In a pointer type definition, the type pointed at does not
have to be declared yet, so be careful about identifying
type-identifiers
*/
PointerType(struct type **ptp;)
{
struct type *tp;
struct def *df;
struct def *lookfor();
struct node *nd;
} :
POINTER TO
[ %if ( (df = lookup(dot.TOK_IDF, CurrentScope)))
/* Either a Module or a Type, but in both cases defined
in this scope, so this is the correct identification
*/
qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
{
if (!df->df_type) {
error("type \"%s\" not declared",
df->df_idf->id_text);
tp = error_type;
}
else tp = df->df_type;
}
| %if ( nd = new_node(), nd->nd_token = dot,
df = lookfor(nd, CurrentScope, 0), free_node(nd),
df->df_kind == D_MODULE)
type(&tp)
|
IDENT
{ tp = NULLTYPE; }
]
{
*ptp = construct_type(T_POINTER, tp);
if (!tp) Forward(&dot, &((*ptp)->next));
}
;
ProcedureType(struct type **ptp;)
{
struct paramlist *pr = 0;
struct type *tp = 0;
} :
PROCEDURE FormalTypeList(&pr, &tp)?
{ *ptp = construct_type(T_PROCEDURE, tp);
(*ptp)->prc_params = pr;
}
;
FormalTypeList(struct paramlist **ppr; struct type **ptp;)
{
struct def *df;
struct type *tp;
struct paramlist *p;
int VARp;
} :
'(' { *ppr = 0; }
[
[ VAR { VARp = 1; }
| { VARp = 0; }
]
FormalType(&tp)
{ *ppr = p = new_paramlist();
p->par_type = tp;
p->par_var = VARp;
}
[
','
[ VAR {VARp = 1; }
| {VARp = 0; }
]
FormalType(&tp)
{ p->next = new_paramlist();
p = p->next;
p->par_type = tp;
p->par_var = VARp;
}
]*
{ p->next = 0; }
]?
')'
[ ':' qualident(D_TYPE|D_HTYPE|D_HIDDEN, &df, "type", (struct node **) 0)
{ *ptp = df->df_type; }
]?
;
ConstantDeclaration
{
struct def *df;
struct idf *id;
struct node *nd;
}:
IDENT { id = dot.TOK_IDF; }
'=' ConstExpression(&nd){ df = define(id, CurrentScope, D_CONST);
df->con_const = nd;
}
;
VariableDeclaration
{
struct node *VarList;
struct type *tp;
} :
IdentAddrList(&VarList)
':' type(&tp)
{ EnterVarList(VarList, tp, proclevel > 0);
FreeNode(VarList);
}
;
IdentAddrList(struct node **pnd;)
{
} :
IDENT { *pnd = MkNode(Name, NULLNODE, NULLNODE, &dot); }
ConstExpression(&(*pnd)->nd_left)?
[ { pnd = &((*pnd)->nd_right); }
',' IDENT
{ *pnd = MkNode(Name, NULLNODE, NULLNODE, &dot); }
ConstExpression(&(*pnd)->nd_left)?
]*
;