ack/mach/powerpc/ncg/mach.c
George Koehler 7e9348169c Add reglap to ncg. Add 4-byte reg_float to PowerPC ncg.
The new feature "reglap" allows two sizes of floating-point register
variables (reg_float), if each register overlaps a single register of
the other size.  PowerPC ncg uses reglap to define 4-byte instances
of f14 to f31 that overlap the 8-byte instances.

When ncgg sees the definition of fs14("f14")=f14, it removes the
8-byte f14 from its rvnumbers array, and adds the 4-byte fs14 in its
place.  Later, when ncg puts a variable in fs14, if it is an 8-byte
variable, then ncg switches to the 8-byte f14.  The code has
/* reglap */ comments in util/ncgg or #ifdef REGLAP in mach/proto/ncg

reglap became necessary because my commit a20b87c caused PowerPC ego
to allocate reg_float in both 4-byte and 8-byte sizes.
2017-10-14 12:40:04 -04:00

256 lines
4.8 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
*/
/*
* machine dependent back end routines for the PowerPC
*/
#include <limits.h>
static long framesize;
con_part(int sz, word w)
{
while (part_size % sz)
part_size++;
if (part_size == TEM_WSIZE)
part_flush();
if (sz == 1) {
w &= 0xFF;
w <<= 8 * (3 - part_size);
part_word |= w;
} else if (sz == 2) {
w &= 0xFFFF;
w <<= 8 * (2 - part_size);
part_word |= w;
} else {
assert(sz == 4);
part_word = w;
}
part_size += sz;
}
con_mult(word sz)
{
if (argval != 4)
fatal("bad icon/ucon size");
fprintf(codefile,".data4 %s\n", str);
}
#define CODE_GENERATOR
#define IEEEFLOAT
#define FL_MSL_AT_LOW_ADDRESS 1
#define FL_MSW_AT_LOW_ADDRESS 1
#define FL_MSB_AT_LOW_ADDRESS 1
#include <con_float>
static void
emit_prolog(void)
{
fprintf(codefile, "mfspr r0, lr\n");
fprintf(codefile, "addi sp, sp, %ld\n", -framesize - 8);
fprintf(codefile, "stw fp, %ld(sp)\n", framesize);
fprintf(codefile, "stw r0, %ld(sp)\n", framesize + 4);
fprintf(codefile, "addi fp, sp, %ld\n", framesize);
}
void
prolog(full nlocals)
{
framesize = nlocals;
#ifdef REGVARS
/* f_regsave() will call emit_prolog() */
#else
emit_prolog();
#endif
}
void
mes(word type)
{
int argt ;
switch ( (int)type ) {
case ms_ext :
for (;;) {
switch ( argt=getarg(
ptyp(sp_cend)|ptyp(sp_pnam)|sym_ptyp) ) {
case sp_cend :
return ;
default:
strarg(argt) ;
fprintf(codefile,".define %s\n",argstr) ;
break ;
}
}
default :
while ( getarg(any_ptyp) != sp_cend ) ;
break ;
}
}
char *segname[] = {
".sect .text",
".sect .data",
".sect .rom",
".sect .bss"
};
#ifdef REGVARS
static long savedf[32];
static long savedi[32];
static int savedtop;
static unsigned long lfs_set;
/* Calculate the register score of a local variable. */
int
regscore(long offset, int size, int type, int frequency, int totype)
{
int score;
switch (type) {
case reg_float:
/* Don't put reg_float in reg_any. */
if (totype != reg_float)
return -1;
assert(size == 4 || size == 8);
break;
default:
assert(size == 4);
break;
}
/* Clamp to avoid overflowing 16-bit int score. */
if (frequency > 8000)
frequency = 8000;
/*
* Each occurence of a regvar saves about 4 bytes by not
* emitting a load or store instruction. The overhead is
* about 8 bytes to save and restore the register, plus
* 4 bytes if the local is a parameter.
*/
score = 4 * frequency - 8 - ((offset >= 0) ? 4 : 0);
#if 0
fprintf(codefile, "! local %ld score %d\n", offset, score);
#endif
return score;
}
/* Initialise regvar system for one function. */
i_regsave(void)
{
int i;
for (i=0; i<32; i++) {
savedf[i] = LONG_MIN;
savedi[i] = LONG_MIN;
}
/* Set top of register save area, relative to fp. */
savedtop = -framesize;
lfs_set = 0; /* empty set */
}
/* Mark a register as being saved. */
regsave(const char* regname, long offset, int size)
{
int regnum = atoi(regname + 1);
assert(regnum >= 0 && regnum <= 31);
switch (regname[0]) {
case 'f':
savedf[regnum] = offset;
framesize += 8;
if (size == 4)
lfs_set |= (1U << regnum);
break;
case 'r':
savedi[regnum] = offset;
framesize += 4;
break;
}
}
static void
saveloadregs(const char* ops, const char* opm, const char *opf)
{
long offset = savedtop;
int reg;
/* Do floating-point registers. */
for (reg = 31; reg >= 0; reg--) {
if (savedf[reg] != LONG_MIN) {
offset -= 8;
fprintf(codefile, "%s f%d, %ld(fp)\n",
opf, reg, offset);
}
}
if (savedi[31] != LONG_MIN && savedi[30] != LONG_MIN) {
/*
* Do multiple registers from reg to r31.
*
* Using stmw or lmw reduces code size, but in some
* processors, runs slower than the equivalent pile of
* stw or lwz instructions.
*/
reg = 30;
while (reg > 0 && savedi[reg - 1] != LONG_MIN)
reg--;
offset -= (32 - reg) * 4;
fprintf(codefile, "%s r%d, %ld(fp)\n", opm, reg, offset);
} else
reg = 32;
/* Do single general-purpose registers. */
for (reg--; reg >= 0; reg--) {
if (savedi[reg] != LONG_MIN) {
offset -= 4;
fprintf(codefile, "%s r%d, %ld(fp)\n",
ops, reg, offset);
}
}
}
f_regsave(void)
{
int reg;
emit_prolog();
saveloadregs("stw", "stmw", "stfd");
/*
* Register variables with offset >= 0 must load an argument
* from that offset.
*/
for (reg = 31; reg >= 0; reg--)
if (savedf[reg] >= 0)
fprintf(codefile, "%s f%d, %ld(fp)\n",
(lfs_set & (1U << reg)) ? "lfs" : "lfd",
reg, savedf[reg]);
for (reg = 31; reg >= 0; reg--)
if (savedi[reg] >= 0)
fprintf(codefile, "lwz r%d, %ld(fp)\n",
reg, savedi[reg]);
}
/* Restore all saved registers. */
regreturn(void)
{
saveloadregs("lwz", "lmw", "lfd");
}
#endif