ack/util/ncgg/hall.c
2013-05-10 12:04:21 +01:00

160 lines
3.4 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
#ifndef NORCSID
static char rcsid[]= "$Id$";
#endif
#include "assert.h"
#include "param.h"
#include "set.h"
#include "extern.h"
#include <stdio.h>
/*
* This file implements the marriage thesis from Hall.
* The thesis says that given a number, say N, of subsets from
* a finite set, it is possible to create a set with cardinality N,
* that contains one member for each of the subsets,
* iff for each number, say M, of subsets from 2 to N the union of
* each M-tuple sets has cardinality >= M.
*
* So what, you might say. As indeed I did.
* But this is actually used here to check the possibility of each
* code rule. If a code rule has a number of token_sets in the with
* clause and a number of properties in the uses rule it must be
* possible to do this from an empty fakestack. Hall helps.
*/
#define MAXHALL (TOKPATMAX+MAXALLREG)
short hallsets[MAXHALL][SETSIZE];
int nhallsets= -1;
int hallfreq[MAXHALL][2];
hallverbose() {
register i;
register max;
fprintf(stderr,"Table of hall frequencies\n # pre post\n");
for (max=MAXHALL-1;hallfreq[max][0]==0 && hallfreq[max][1]==0;max--)
;
for (i=0;i<=max;i++)
fprintf(stderr,"%3d%6d%6d\n",i,hallfreq[i][0],hallfreq[i][1]);
}
inithall() {
assert(nhallsets == -1);
nhallsets=0;
}
nexthall(sp) register short *sp; {
register i;
assert(nhallsets>=0);
for(i=0;i<SETSIZE;i++)
hallsets[nhallsets][i] = sp[i];
nhallsets++;
}
card(sp) register short *sp; {
register sum,i;
sum=0;
for(i=0;i<8*sizeof(short)*SETSIZE;i++)
if (BIT(sp,i))
sum++;
return(sum);
}
checkhall() {
assert(nhallsets>=0);
if (!hall())
error("Hall says: \"You can't have those registers\"");
}
hall() {
register i,j,k;
int ok;
hallfreq[nhallsets][0]++;
/*
* If a set has cardinality >= nhallsets it can never be the cause
* of the hall algorithm failing. So it can be thrown away.
* But then nhallsets is less, so this step can be re-applied.
*/
do {
ok = 0;
for(i=0;i<nhallsets;i++)
if (card(hallsets[i])>=nhallsets) {
for (j=i+1;j<nhallsets;j++)
for(k=0;k<SETSIZE;k++)
hallsets[j-1][k] =
hallsets[j][k];
nhallsets--;
ok = 1;
break;
}
} while (ok);
/*
* Now all sets have cardinality < nhallsets
*/
hallfreq[nhallsets][1]++;
ok=recurhall(nhallsets,hallsets);
nhallsets = -1;
return(ok);
}
recurhall(nhallsets,hallsets) short hallsets[][SETSIZE]; {
short copysets[MAXHALL][SETSIZE];
short setsum[SETSIZE];
register i,j,k,ncopys;
/*
* First check cardinality of union of all
*/
for(k=0;k<SETSIZE;k++)
setsum[k]=0;
for(i=0;i<nhallsets;i++)
unite(hallsets[i],setsum);
if (card(setsum)<nhallsets)
return(0);
/*
* Now check the hall property of everything but one set,
* for all sets
*/
for(i=0;i<nhallsets;i++) {
ncopys=0;
for(j=0;j<nhallsets;j++) if (j!=i) {
for(k=0;k<SETSIZE;k++)
copysets[ncopys][k] = hallsets[j][k];
ncopys++;
}
assert(ncopys == nhallsets-1);
if (!recurhall(ncopys,copysets))
return(0);
}
return(1);
}
unite(sp,into) register short *sp,*into; {
register i;
for(i=0;i<SETSIZE;i++)
into[i] |= sp[i];
}
/*
* Limerick (rot13)
*
* N zngurzngvpvna anzrq Unyy
* Unf n urknurqebavpny onyy,
* Naq gur phor bs vgf jrvtug
* Gvzrf uvf crpxre'f, cyhf rvtug
* Vf uvf cubar ahzore -- tvir uvz n pnyy..
*/