160 lines
3.4 KiB
C
160 lines
3.4 KiB
C
/*
|
|
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
|
|
* See the copyright notice in the ACK home directory, in the file "Copyright".
|
|
*/
|
|
#ifndef NORCSID
|
|
static char rcsid[]= "$Id$";
|
|
#endif
|
|
|
|
#include "assert.h"
|
|
#include "param.h"
|
|
#include "set.h"
|
|
#include "extern.h"
|
|
#include <stdio.h>
|
|
|
|
/*
|
|
* This file implements the marriage thesis from Hall.
|
|
* The thesis says that given a number, say N, of subsets from
|
|
* a finite set, it is possible to create a set with cardinality N,
|
|
* that contains one member for each of the subsets,
|
|
* iff for each number, say M, of subsets from 2 to N the union of
|
|
* each M-tuple sets has cardinality >= M.
|
|
*
|
|
* So what, you might say. As indeed I did.
|
|
* But this is actually used here to check the possibility of each
|
|
* code rule. If a code rule has a number of token_sets in the with
|
|
* clause and a number of properties in the uses rule it must be
|
|
* possible to do this from an empty fakestack. Hall helps.
|
|
*/
|
|
|
|
#define MAXHALL (TOKPATMAX+MAXALLREG)
|
|
short hallsets[MAXHALL][SETSIZE];
|
|
int nhallsets= -1;
|
|
int hallfreq[MAXHALL][2];
|
|
|
|
hallverbose() {
|
|
register i;
|
|
register max;
|
|
|
|
fprintf(stderr,"Table of hall frequencies\n # pre post\n");
|
|
for (max=MAXHALL-1;hallfreq[max][0]==0 && hallfreq[max][1]==0;max--)
|
|
;
|
|
for (i=0;i<=max;i++)
|
|
fprintf(stderr,"%3d%6d%6d\n",i,hallfreq[i][0],hallfreq[i][1]);
|
|
}
|
|
|
|
inithall() {
|
|
|
|
assert(nhallsets == -1);
|
|
nhallsets=0;
|
|
}
|
|
|
|
nexthall(sp) register short *sp; {
|
|
register i;
|
|
|
|
assert(nhallsets>=0);
|
|
for(i=0;i<SETSIZE;i++)
|
|
hallsets[nhallsets][i] = sp[i];
|
|
nhallsets++;
|
|
}
|
|
|
|
card(sp) register short *sp; {
|
|
register sum,i;
|
|
|
|
sum=0;
|
|
for(i=0;i<8*sizeof(short)*SETSIZE;i++)
|
|
if (BIT(sp,i))
|
|
sum++;
|
|
return(sum);
|
|
}
|
|
|
|
checkhall() {
|
|
|
|
assert(nhallsets>=0);
|
|
if (!hall())
|
|
error("Hall says: \"You can't have those registers\"");
|
|
}
|
|
|
|
hall() {
|
|
register i,j,k;
|
|
int ok;
|
|
|
|
hallfreq[nhallsets][0]++;
|
|
/*
|
|
* If a set has cardinality >= nhallsets it can never be the cause
|
|
* of the hall algorithm failing. So it can be thrown away.
|
|
* But then nhallsets is less, so this step can be re-applied.
|
|
*/
|
|
|
|
do {
|
|
ok = 0;
|
|
for(i=0;i<nhallsets;i++)
|
|
if (card(hallsets[i])>=nhallsets) {
|
|
for (j=i+1;j<nhallsets;j++)
|
|
for(k=0;k<SETSIZE;k++)
|
|
hallsets[j-1][k] =
|
|
hallsets[j][k];
|
|
nhallsets--;
|
|
ok = 1;
|
|
break;
|
|
}
|
|
} while (ok);
|
|
|
|
/*
|
|
* Now all sets have cardinality < nhallsets
|
|
*/
|
|
|
|
hallfreq[nhallsets][1]++;
|
|
ok=recurhall(nhallsets,hallsets);
|
|
nhallsets = -1;
|
|
return(ok);
|
|
}
|
|
|
|
recurhall(nhallsets,hallsets) short hallsets[][SETSIZE]; {
|
|
short copysets[MAXHALL][SETSIZE];
|
|
short setsum[SETSIZE];
|
|
register i,j,k,ncopys;
|
|
|
|
/*
|
|
* First check cardinality of union of all
|
|
*/
|
|
for(k=0;k<SETSIZE;k++)
|
|
setsum[k]=0;
|
|
for(i=0;i<nhallsets;i++)
|
|
unite(hallsets[i],setsum);
|
|
if (card(setsum)<nhallsets)
|
|
return(0);
|
|
/*
|
|
* Now check the hall property of everything but one set,
|
|
* for all sets
|
|
*/
|
|
for(i=0;i<nhallsets;i++) {
|
|
ncopys=0;
|
|
for(j=0;j<nhallsets;j++) if (j!=i) {
|
|
for(k=0;k<SETSIZE;k++)
|
|
copysets[ncopys][k] = hallsets[j][k];
|
|
ncopys++;
|
|
}
|
|
assert(ncopys == nhallsets-1);
|
|
if (!recurhall(ncopys,copysets))
|
|
return(0);
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
unite(sp,into) register short *sp,*into; {
|
|
register i;
|
|
|
|
for(i=0;i<SETSIZE;i++)
|
|
into[i] |= sp[i];
|
|
}
|
|
|
|
/*
|
|
* Limerick (rot13)
|
|
*
|
|
* N zngurzngvpvna anzrq Unyy
|
|
* Unf n urknurqebavpny onyy,
|
|
* Naq gur phor bs vgf jrvtug
|
|
* Gvzrf uvf crpxre'f, cyhf rvtug
|
|
* Vf uvf cubar ahzore -- tvir uvz n pnyy..
|
|
*/
|