ack/lang/m2/comp/casestat.C

337 lines
7.7 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* C A S E S T A T E M E N T C O D E G E N E R A T I O N */
/* $Header$ */
/* Generation of case statements is done by first creating a
description structure for the statement, build a list of the
case-labels, then generating a case description in the code,
and generating either CSA or CSB, and then generating code for the
cases themselves.
*/
#include "debug.h"
#include <em_label.h>
#include <em_arith.h>
#include <em_code.h>
#include <alloc.h>
#include <assert.h>
#include "Lpars.h"
#include "type.h"
#include "LLlex.h"
#include "node.h"
#include "desig.h"
#include "walk.h"
#include "chk_expr.h"
#include "def.h"
#include "density.h"
struct switch_hdr {
label sh_break; /* label of statement after this one */
label sh_default; /* label of ELSE part, or 0 */
int sh_nrofentries; /* number of cases */
t_type *sh_type; /* type of case expression */
arith sh_lowerbd; /* lowest case label */
arith sh_upperbd; /* highest case label */
struct case_entry *sh_entries; /* the cases with their generated
labels
*/
};
/* STATICALLOCDEF "switch_hdr" 5 */
struct case_entry {
struct case_entry *ce_next; /* next in list */
label ce_label; /* generated label */
arith ce_low, ce_up; /* lower and upper bound of range */
};
/* STATICALLOCDEF "case_entry" 20 */
/* The constant DENSITY determines when CSA and when CSB instructions
are generated. Reasonable values are: 2, 3, 4.
On machines that have lots of address space and memory, higher values
might also be reasonable. On these machines the density of jump tables
may be lower.
*/
compact(nr, low, up)
arith low, up;
{
/* Careful! up - low might not fit in an arith. And then,
the test "up-low < 0" might also not work to detect this
situation! Or is this just a bug in the M68020/M68000?
*/
arith diff = up - low;
return (nr != 0 && diff >= 0 && fit(diff, (int) word_size) &&
diff / nr <= (DENSITY - 1));
}
#define nd_lab nd_symb
int
CaseCode(nd, exitlabel, end_reached)
t_node *nd;
label exitlabel;
{
/* Check the expression, stack a new case header and
fill in the necessary fields.
"exitlabel" is the exit-label of the closest enclosing
LOOP-statement, or 0.
*/
register struct switch_hdr *sh = new_switch_hdr();
register t_node *pnode = nd;
register struct case_entry *ce;
register arith val;
label CaseDescrLab;
int rval;
assert(pnode->nd_class == Stat && pnode->nd_symb == CASE);
if (ChkExpression(&(pnode->nd_LEFT))) {
MkCoercion(&(pnode->nd_LEFT),BaseType(pnode->nd_LEFT->nd_type));
CodePExpr(pnode->nd_LEFT);
}
sh->sh_type = pnode->nd_LEFT->nd_type;
sh->sh_break = ++text_label;
/* Now, create case label list
*/
while (pnode = pnode->nd_RIGHT) {
if (pnode->nd_class == Link && pnode->nd_symb == '|') {
if (pnode->nd_LEFT) {
/* non-empty case
*/
pnode->nd_LEFT->nd_lab = ++text_label;
AddCases(sh, /* to descriptor */
pnode->nd_LEFT->nd_LEFT,
/* of case labels */
(label) pnode->nd_LEFT->nd_lab
/* and code label */
);
}
}
else {
/* Else part
*/
sh->sh_default = ++text_label;
break;
}
}
if (!sh->sh_nrofentries) {
/* There were no cases, so we have to check the case-expression
here
*/
if (! (sh->sh_type->tp_fund & T_DISCRETE)) {
node_error(nd, "illegal type in CASE-expression");
}
}
/* Now generate code for the switch itself
First the part that CSA and CSB descriptions have in common.
*/
CaseDescrLab = ++data_label; /* the rom must have a label */
C_df_dlb(CaseDescrLab);
if (sh->sh_default) C_rom_ilb(sh->sh_default);
else C_rom_ucon("0", pointer_size);
if (compact(sh->sh_nrofentries, sh->sh_lowerbd, sh->sh_upperbd)) {
/* CSA
*/
int gen = 1;
ce = sh->sh_entries;
C_rom_cst((arith) 0);
C_rom_cst(sh->sh_upperbd - sh->sh_lowerbd);
for (val = sh->sh_lowerbd; val <= sh->sh_upperbd; val++) {
assert(ce);
if (gen || val == ce->ce_low) {
gen = 1;
C_rom_ilb(ce->ce_label);
if (val == ce->ce_up) {
gen = 0;
ce = ce->ce_next;
}
}
else if (sh->sh_default) C_rom_ilb(sh->sh_default);
else C_rom_ucon("0", pointer_size);
}
C_loc(sh->sh_lowerbd);
C_sbu(word_size);
c_lae_dlb(CaseDescrLab); /* perform the switch */
C_csa(word_size);
}
else {
/* CSB
*/
C_rom_cst((arith)sh->sh_nrofentries);
for (ce = sh->sh_entries; ce; ce = ce->ce_next) {
/* generate the entries: value + prog.label
*/
val = ce->ce_low;
do {
C_rom_cst(val);
C_rom_ilb(ce->ce_label);
} while (val++ != ce->ce_up);
}
c_lae_dlb(CaseDescrLab); /* perform the switch */
C_csb(word_size);
}
/* Now generate code for the cases
*/
pnode = nd;
rval = 0;
while (pnode = pnode->nd_RIGHT) {
if (pnode->nd_class == Link && pnode->nd_symb == '|') {
if (pnode->nd_LEFT) {
rval |= LblWalkNode((label) pnode->nd_LEFT->nd_lab,
pnode->nd_LEFT->nd_RIGHT,
exitlabel, end_reached);
C_bra(sh->sh_break);
}
}
else {
/* Else part
*/
assert(sh->sh_default != 0);
rval |= LblWalkNode(sh->sh_default,
pnode, exitlabel, end_reached);
break;
}
}
def_ilb(sh->sh_break);
FreeSh(sh);
return rval;
}
FreeSh(sh)
register struct switch_hdr *sh;
{
/* free the allocated switch structure
*/
register struct case_entry *ce;
ce = sh->sh_entries;
while (ce) {
struct case_entry *tmp = ce->ce_next;
free_case_entry(ce);
ce = tmp;
}
free_switch_hdr(sh);
}
AddCases(sh, node, lbl)
struct switch_hdr *sh;
register t_node *node;
label lbl;
{
/* Add case labels to the case label list
*/
if (node->nd_class == Link) {
if (node->nd_symb == UPTO) {
assert(node->nd_LEFT->nd_class == Value);
assert(node->nd_RIGHT->nd_class == Value);
AddOneCase(sh, node->nd_LEFT, node->nd_RIGHT, lbl);
return;
}
assert(node->nd_symb == ',');
AddCases(sh, node->nd_LEFT, lbl);
AddCases(sh, node->nd_RIGHT, lbl);
return;
}
assert(node->nd_class == Value);
AddOneCase(sh, node, node, lbl);
}
AddOneCase(sh, lnode, rnode, lbl)
register struct switch_hdr *sh;
t_node *lnode, *rnode;
label lbl;
{
register struct case_entry *ce = new_case_entry();
register struct case_entry *c1 = sh->sh_entries, *c2 = 0;
int fund = sh->sh_type->tp_fund;
ce->ce_label = lbl;
ce->ce_low = lnode->nd_INT;
ce->ce_up = rnode->nd_INT;
if (! ChkCompat(&lnode, sh->sh_type, "case") ||
! ChkCompat(&rnode, sh->sh_type, "case")) {
}
if (sh->sh_entries == 0) {
/* first case entry
*/
sh->sh_entries = ce;
sh->sh_lowerbd = ce->ce_low;
sh->sh_upperbd = ce->ce_up;
}
else {
/* second etc. case entry
find the proper place to put ce into the list
*/
if (chk_bounds(ce->ce_low, sh->sh_lowerbd, fund)) {
sh->sh_lowerbd = ce->ce_low;
}
if (! chk_bounds(ce->ce_up, sh->sh_upperbd, fund)) {
sh->sh_upperbd = ce->ce_up;
}
while (c1 &&! chk_bounds(ce->ce_up, c1->ce_low, fund)) {
c2 = c1;
c1 = c1->ce_next;
}
/* At this point three cases are possible:
1: c1 != 0 && c2 != 0:
insert ce somewhere in the middle
2: c1 != 0 && c2 == 0:
insert ce right after the head
3: c1 == 0 && c2 != 0:
append ce to last element
The case c1 == 0 && c2 == 0 cannot occur, since
the list is guaranteed not to be empty.
*/
if (c2) {
if ( chk_bounds(ce->ce_low, c2->ce_up, fund)) {
node_error(rnode, "multiple case entry for value %ld", (long)(ce->ce_low));
free_case_entry(ce);
return;
}
}
if (c1) {
if (c2) {
ce->ce_next = c2->ce_next;
c2->ce_next = ce;
}
else {
ce->ce_next = sh->sh_entries;
sh->sh_entries = ce;
}
}
else {
assert(c2);
c2->ce_next = ce;
}
}
sh->sh_nrofentries += ce->ce_up - ce->ce_low + 1;
}