ack/util/led/memory.c
duk f532b58045 Added provisions for copying everything after the string area into the
resulting object file. Because this is most likely symbolic debugging
information, these are parametrized by #ifdef SYMDBUG.
1985-01-08 11:54:57 +00:00

506 lines
12 KiB
C

#ifndef lint
static char rcsid[] = "$Header$";
#endif
/*
* Memory manager. Memory is divided into NMEMS pieces. There is a struct
* for each piece telling where it is, how many bytes are used, and how may
* are left. If a request for core doesn't fit in the left bytes, an sbrk()
* is done and pieces after the one that requested the growth are moved up.
*/
#include <stdio.h>
#include "out.h"
#include "const.h"
#include "assert.h"
#include "debug.h"
#include "memory.h"
struct memory mems[NMEMS];
bool incore = TRUE; /* TRUE while everything can be kept in core. */
off_t core_position = (off_t)0; /* Index of current module. */
#define AT_LEAST 2 /* See comment about string areas. */
/*
* Initialize some pieces of core. We hope that this will be our last
* real allocation, meaning we've made the right choices.
*/
init_core()
{
FILE *ledrc;
int piece;
off_t left;
register char *base;
register off_t total_size;
register struct memory *mem;
extern char *sbrk();
#ifndef TJALK
/*
* Read in what should be allocated for each piece initially.
* This facilitates testing, but is slower and should not
* be done in the final version. XXX
*/
incore = (ledrc = fopen(".ledrc", "r")) != (FILE *)0;
if (incore) {
while (fscanf(ledrc, "%d %d", &piece, &left) == 2)
mems[piece].mem_left = left;
fclose(ledrc);
}
#else TJALK
mems[ALLOHEAD].mem_left = 20; /*XXX*/
mems[ALLOSECT].mem_left = 60; /*XXX*/
mems[ALLOEMIT + 0].mem_left = 65536;
mems[ALLOEMIT + 1].mem_left = 65536;
mems[ALLORELO].mem_left = 65536;
mems[ALLOLOCL].mem_left = 65536;
mems[ALLOGLOB].mem_left = 65536;
mems[ALLOLCHR].mem_left = 65536;
mems[ALLOGCHR].mem_left = 65536;
#ifdef SYMDBUG
mems[ALLODBUG].mem_left = 65536;
#endif SYMDBUG
mems[ALLOSYMB].mem_left = 4096;
mems[ALLOARCH].mem_left = 512;
mems[ALLOMODL].mem_left = 196608;
mems[ALLORANL].mem_left = 4096;
#endif TJALK
total_size = (off_t)0;/* Will accumulate the sizes. */
base = sbrk(0); /* First free. */
for (mem = mems; mem < &mems[NMEMS]; mem++) {
mem->mem_base = base;
mem->mem_full = (off_t)0;
base += mem->mem_left; /* Each piece will start after prev. */
total_size += mem->mem_left;
}
/*
* String areas are special-cased. The first byte is unused as a way to
* distinguish a name without string from a name which has the first
* string in the string area.
*/
if (mems[ALLOLCHR].mem_left == 0)
total_size += 1;
else
mems[ALLOLCHR].mem_left -= 1;
if (mems[ALLOGCHR].mem_left == 0)
total_size += 1;
else
mems[ALLOGCHR].mem_left -= 1;
mems[ALLOLCHR].mem_full = 1;
mems[ALLOGCHR].mem_full = 1;
if ((int)sbrk(total_size) == -1) {
incore = FALSE; /* In core strategy failed. */
if ((int)sbrk(AT_LEAST) == -1)
fatal("no core at all");
}
}
/*
* Allocate an extra block of `incr' bytes and move all pieces with index
* higher than `piece' up with the size of the block. Return whether the
* allocate succeeded.
*/
static bool
move_up(piece, incr)
register int piece;
register off_t incr;
{
register struct memory *mem;
extern char *sbrk();
debug("move_up(%d, %d)\n", piece, (int)incr, 0, 0);
if ((int)sbrk(incr) == -1)
return FALSE;
for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--)
copy_up(mem, incr);
mems[piece].mem_left += incr;
return TRUE;
}
extern int passnumber;
/*
* This routine is called if `piece' needs `incr' bytes and the system won't
* give them. We first steal the free bytes of all lower pieces and move them
* and `piece' down. If that doesn't give us enough bytes, we steal the free
* bytes of all higher pieces and move them up. We return whether we have
* enough bytes, the first or the second time.
*/
static bool
compact(piece, incr)
register int piece;
register off_t incr;
{
register off_t gain;
register struct memory *mem;
debug("compact(%d, %d)\n", piece, (int)incr, 0, 0);
gain = mems[0].mem_left;
mems[0].mem_left = (off_t)0;
for (mem = &mems[1]; mem <= &mems[piece]; mem++) {
/* Here memory is inserted before a piece. */
assert(passnumber == FIRST || gain == (off_t)0);
copy_down(mem, gain);
gain += mem->mem_left;
mem->mem_left = (off_t)0;
}
/*
* Note that we already added the left bytes of the piece we want to
* enlarge to `gain'.
*/
if (gain < incr) {
register off_t up = (off_t)0;
for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--) {
/* Here memory is appended after a piece. */
up += mem->mem_left;
copy_up(mem, up);
mem->mem_left = (off_t)0;
}
gain += up;
}
mems[piece].mem_left = gain;
return gain >= incr;
}
/*
* The bytes of `mem' must be moved `dist' down in the address space.
* We copy the bytes from low to high, because the tail of the new area may
* overlap with the old area, but we do not want to overwrite them before they
* are copied.
*/
static
copy_down(mem, dist)
register struct memory *mem;
off_t dist;
{
register char *old;
register char *new;
register off_t size;
size = mem->mem_full;
old = mem->mem_base;
new = old - dist;
mem->mem_base = new;
while (size--)
*new++ = *old++;
}
/*
* The bytes of `mem' must be moved `dist' up in the address space.
* We copy the bytes from high to low, because the tail of the new area may
* overlap with the old area, but we do not want to overwrite them before they
* are copied.
*/
static
copy_up(mem, dist)
register struct memory *mem;
off_t dist;
{
register char *old;
register char *new;
register off_t size;
size = mem->mem_full;
old = mem->mem_base + size;
new = old + dist;
while (size--)
*--new = *--old;
mem->mem_base = new;
}
/*
* Add `size' bytes to the bytes already allocated for `piece'. If it has no
* free bytes left, ask them from memory or, if that fails, from the free
* bytes of other pieces. The offset of the new area is returned. No matter
* how many times the area is moved, because of another allocate, this offset
* remains valid.
*/
off_t
alloc(piece, size)
register int piece;
register off_t size;
{
register off_t incr = 0;
register off_t left = mems[piece].mem_left;
register off_t full = mems[piece].mem_full;
assert(passnumber == FIRST || (!incore && piece == ALLOMODL));
if (size == (off_t)0)
return full;
while (left + incr < size)
incr += INCRSIZE;
if (incr == 0 || move_up(piece, incr) || compact(piece, incr)) {
mems[piece].mem_full += size;
mems[piece].mem_left -= size;
return full;
} else {
incore = FALSE;
return BADOFF;
}
}
/*
* Same as alloc() but for a piece which really needs it. If the first
* attempt fails, release the space occupied by other pieces and try again.
*/
off_t
hard_alloc(piece, size)
int piece;
off_t size;
{
off_t ret;
register int i;
if ((ret = alloc(piece, size)) != BADOFF)
return ret;
/*
* Deallocate what we don't need.
*/
for (i = 0; i < NMEMS; i++) {
switch (i) {
case ALLOHEAD:
case ALLOSECT:
case ALLOGLOB:
case ALLOGCHR:
case ALLOSYMB:
case ALLOARCH:
case ALLOMODL:
break; /* Do not try to deallocate this. */
default:
dealloc(i);
break;
}
}
free_saved_moduls();
return alloc(piece, size);
}
/*
* We don't need the previous modules, so we put the current module
* at the start of the piece allocated for module contents, thereby
* overwriting the saved modules, and release its space.
*/
static
free_saved_moduls()
{
register off_t size;
register char *old, *new;
register struct memory *mem = &mems[ALLOMODL];
size = mem->mem_full - core_position;
new = mem->mem_base;
old = new + core_position;
while (size--)
*new++ = *old++;
mem->mem_full -= core_position;
mem->mem_left += core_position;
core_position = (off_t)0;
}
/*
* The piece of memory with index `piece' is no longer needed.
* We take care that it can be used by compact() later, if needed.
*/
dealloc(piece)
register int piece;
{
/*
* Some pieces need their memory throughout the program.
*/
assert(piece != ALLOHEAD);
assert(piece != ALLOSECT);
assert(piece != ALLOGLOB);
assert(piece != ALLOGCHR);
assert(piece != ALLOSYMB);
assert(piece != ALLOARCH);
mems[piece].mem_left += mems[piece].mem_full;
mems[piece].mem_full = (off_t)0;
}
char *
core_alloc(piece, size)
register int piece;
register off_t size;
{
register off_t off;
if ((off = alloc(piece, size)) == BADOFF)
return (char *)0;
return address(piece, off);
}
/*
* Reset index into piece of memory for modules and
* take care that the allocated pieces will not be moved.
*/
freeze_core()
{
register int i;
core_position = (off_t)0;
if (incore)
return;
for (i = 0; i < NMEMS; i++) {
switch (i) {
case ALLOHEAD:
case ALLOSECT:
case ALLOGLOB:
case ALLOGCHR:
case ALLOSYMB:
case ALLOARCH:
break; /* Do not try to deallocate this. */
default:
dealloc(i);
break;
}
}
compact(NMEMS - 1, (off_t)0);
}
/* ------------------------------------------------------------------------- */
extern bool bytes_reversed;
extern bool words_reversed;
/*
* To transform the various pieces of the output in core to the file format,
* we must order the bytes in the ushorts and longs as ACK prescribes.
*/
write_bytes()
{
register struct outhead *head;
ushort nsect, nrelo;
long offchar;
int fd;
register int piece;
extern ushort NLocals, NGlobals;
extern long NLChars, NGChars;
extern int flagword;
extern char *outputname;
head = (struct outhead *)mems[ALLOHEAD].mem_base;
nsect = head->oh_nsect;
nrelo = head->oh_nrelo;
offchar = OFF_CHAR(*head);
if (bytes_reversed || words_reversed) {
headswap();
sectswap(nsect);
reloswap(nrelo);
}
/*
* We allocated two areas: one for local and one for global names.
* Also, we used another kind of on_foff than on file.
* At the end of the global area we have put the section names.
*/
if (!(flagword & SFLAG)) {
namecpy((struct outname *)mems[ALLOLOCL].mem_base,
NLocals,
offchar
);
namecpy((struct outname *)mems[ALLOGLOB].mem_base,
NGlobals + nsect,
offchar + NLChars
);
}
if ((fd = creat(outputname, 0666)) < 0)
fatal("can't create %s", outputname);
/*
* These pieces must always be written.
*/
for (piece = ALLOHEAD; piece < ALLORELO; piece++)
writelong(fd, mems[piece].mem_base, mems[piece].mem_full);
/*
* The rest depends on the flags.
*/
if (flagword & RFLAG)
writelong(fd, mems[ALLORELO].mem_base, mems[ALLORELO].mem_full);
if (!(flagword & SFLAG)) {
writelong(fd, mems[ALLOLOCL].mem_base, mems[ALLOLOCL].mem_full);
writelong(fd, mems[ALLOGLOB].mem_base, mems[ALLOGLOB].mem_full);
writelong(fd, mems[ALLOLCHR].mem_base + 1, NLChars);
writelong(fd, mems[ALLOGCHR].mem_base + 1, NGChars);
#ifdef SYMDBUG
writelong(fd, mems[ALLODBUG].mem_base, mems[ALLODBUG].mem_size);
#endif SYMDBUG
}
close(fd);
}
static
writelong(fd, base, size)
register int fd;
register char *base;
register off_t size;
{
register int chunk;
while (size) {
chunk = size > (off_t)MAXCHUNK ? MAXCHUNK : size;
write(fd, base, chunk);
size -= chunk;
base += chunk;
}
}
static
headswap()
{
register struct outhead *head;
head = (struct outhead *)mems[ALLOHEAD].mem_base;
swap((char *)head, SF_HEAD);
}
static
sectswap(nsect)
register ushort nsect;
{
register struct outsect *sect;
sect = (struct outsect *)mems[ALLOSECT].mem_base;
while (nsect--)
swap((char *)sect++, SF_SECT);
}
static
reloswap(nrelo)
register ushort nrelo;
{
register struct outrelo *relo;
relo = (struct outrelo *)mems[ALLORELO].mem_base;
while (nrelo--)
swap((char *)relo++, SF_RELO);
}
static
namecpy(name, nname, offchar)
register struct outname *name;
register ushort nname;
register long offchar;
{
while (nname--) {
if (name->on_foff)
name->on_foff += offchar - 1;
if (bytes_reversed || words_reversed)
swap((char *)name, SF_NAME);
name++;
}
}