ack/util/led/memory.c

755 lines
18 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*/
#ifndef lint
static char rcsid[] = "$Id$";
#endif
/*
* Memory manager. Memory is divided into NMEMS pieces. There is a struct
* for each piece telling where it is, how many bytes are used, and how may
* are left. If a request for core doesn't fit in the left bytes, an sbrk()
* is done and pieces after the one that requested the growth are moved up.
*
* Unfortunately, we cannot use sbrk to request more memory, because its
* result cannot be trusted. More specifically, it does not work properly
* on 2.9 BSD, and probably does not work properly on 2.8 BSD and V7 either.
* The problem is that "sbrk" adds the increment to the current "break"
* WITHOUT testing the carry bit. So, if your break is at 40000, and
* you "sbrk(30000)", it will succeed, but your break will be at 4464
* (70000 - 65536).
*/
/*
* USEMALLOC tells the allocator to use malloc() and realloc(), not brk().
* This might help systems where brk() doesn't work, or where malloc() can
* allocate outside the brk area.
*/
#define USEMALLOC
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <out.h>
#include "const.h"
#include "debug.h"
#include "memory.h"
#include "object.h"
#include "sym.h"
#include "finish.h"
#include "write.h"
#ifndef USEMALLOC
static void copy_down(struct memory* mem, ind_t dist);
static void copy_up(struct memory* mem, ind_t dist);
#endif
static void free_saved_moduls(void);
struct memory mems[NMEMS];
bool incore = TRUE; /* TRUE while everything can be kept in core. */
ind_t core_position = (ind_t)0; /* Index of current module. */
#ifdef USEMALLOC
static size_t modl_initial_size;
static bool frozen = FALSE; /* TRUE after freeze_core(). */
#else /* ifndef USEMALLOC */
#define GRANULE 64 /* power of 2 */
static char *BASE;
static ind_t refused;
static int sbreak(ind_t incr)
{
incr = (incr + (GRANULE - 1)) & ~(GRANULE - 1);
if ((refused && refused < incr) ||
BASE + incr < BASE ||
brk(BASE + incr) == -1) {
if (!refused || refused > incr)
refused = incr;
return -1;
}
BASE += incr;
return 0;
}
#endif /* ndef USEMALLOC */
/*
* Initialize some pieces of core. We hope that this will be our last
* real allocation, meaning we've made the right choices.
*/
void init_core(void)
{
#ifdef USEMALLOC
struct memory *failed_mem = NULL;
struct memory *mem;
bool string_area;
#include "mach.h"
modl_initial_size = mems[ALLOMODL].mem_left;
for (mem = mems; mem < &mems[NMEMS]; mem++) {
string_area = mem == &mems[ALLOLCHR] || mem == &mems[ALLOGCHR];
/* String areas need at least one byte. */
if (string_area && mem->mem_left == 0)
mem->mem_left++;
/* Don't malloc() size zero. */
if (mem->mem_left > 0) {
mem->mem_base = malloc(mem->mem_left);
if (mem->mem_base == NULL) {
failed_mem = mem;
break;
}
}
mem->mem_full = 0;
if (string_area) {
mem->mem_left--;
mem->mem_full++;
}
}
if (failed_mem != NULL) {
incore = FALSE; /* In core strategy failed. */
/* Undo allocations. */
for (mem = mems; mem != failed_mem; mem++)
free(mem->mem_base);
/* Allocate only the string areas. */
for (mem = mems; mem < &mems[NMEMS]; mem++) {
if (mem == &mems[ALLOLCHR] || mem == &mems[ALLOGCHR]) {
mem->mem_base = malloc(1);
if (mem->mem_base == NULL)
fatal("no core at all");
mem->mem_left = 0;
mem->mem_full = 1;
} else {
mem->mem_base = NULL;
mem->mem_left = mem->mem_full = 0;
}
}
}
#else /* ifndef USEMALLOC */
register char *base;
register ind_t total_size;
register struct memory *mem;
#include "mach.h"
#define ALIGN 8 /* minimum alignment for pieces */
#define AT_LEAST (ind_t)2*ALIGN /* See comment about string areas. */
total_size = (ind_t)0; /* Will accumulate the sizes. */
BASE = base = sbrk(0); /* First free. */
if ((int)base % ALIGN) {
base = sbrk(ALIGN - (int)base % ALIGN);
BASE = base = sbrk(0);
}
/*
* String areas are special-cased. The first byte is unused as a way to
* distinguish a name without string from a name which has the first
* string in the string area.
*/
for (mem = mems; mem < &mems[NMEMS]; mem++) {
mem->mem_base = base;
mem->mem_full = (ind_t)0;
if (mem == &mems[ALLOLCHR] || mem == &mems[ALLOGCHR]) {
if (mem->mem_left == 0) {
mem->mem_left = ALIGN;
total_size += ALIGN;
base += ALIGN;
}
base += mem->mem_left;
total_size += mem->mem_left;
mem->mem_left--;
mem->mem_full++;
}
else {
base += mem->mem_left; /* Each piece will start after prev. */
total_size += mem->mem_left;
}
}
if (sbreak(total_size) == -1) {
incore = FALSE; /* In core strategy failed. */
if (sbreak(AT_LEAST) == -1)
fatal("no core at all");
base = BASE;
for (mem = mems; mem < &mems[NMEMS]; mem++) {
mem->mem_base = base;
if (mem == &mems[ALLOLCHR] || mem == &mems[ALLOGCHR]) {
base += ALIGN;
mem->mem_left = ALIGN - 1;
mem->mem_full = 1;
}
else {
mem->mem_full = (ind_t)0;
mem->mem_left = 0;
}
}
}
#endif /* ndef USEMALLOC */
}
/*
* Allocate an extra block of `incr' bytes and move all pieces with index
* higher than `piece' up with the size of the block.
* Move up as much as possible, if "incr" fails.
*/
static ind_t
move_up(piece, incr)
register int piece;
register ind_t incr;
{
#ifdef USEMALLOC
size_t oldsize = mems[piece].mem_full + mems[piece].mem_left;
size_t newsize;
char *newbase;
if (frozen)
return 0; /* Can't realloc() frozen core. */
/* We realloc() this piece without moving the other pieces. */
while (incr > 0) {
newsize = oldsize + incr;
if (newsize > oldsize) {
newbase = realloc(mems[piece].mem_base, newsize);
if (newbase != NULL) {
mems[piece].mem_base = newbase;
mems[piece].mem_left += incr;
return incr;
}
}
incr -= INCRSIZE < incr ? INCRSIZE : incr;
}
return 0;
#else /* ifndef USEMALLOC */
register struct memory *mem;
#ifndef NOSTATISTICS
extern int statistics;
#endif
debug("move_up(%d, %d)\n", piece, (int)incr, 0, 0);
while (incr > 0 && sbreak(incr) == -1)
incr -= INCRSIZE < incr ? INCRSIZE : incr;
if (incr == 0)
return (ind_t) 0;
#ifndef NOSTATISTICS
if (statistics) fprintf(stderr,"moving up %lx\n", (long) incr);
#endif
for (mem = &mems[NMEMS - 1]; mem > &mems[piece]; mem--)
copy_up(mem, incr);
mems[piece].mem_left += incr;
return incr;
#endif /* ndef USEMALLOC */
}
extern int passnumber;
/*
* This routine is called if `piece' needs `incr' bytes and the system won't
* give them. We first steal the free bytes of all lower pieces and move them
* and `piece' down. If that doesn't give us enough bytes, we steal the free
* bytes of all higher pieces and move them up. We return whether we have
* enough bytes, the first or the second time.
*/
static bool
compact(int piece, ind_t incr, int flag)
#define NORMAL 0
#define FREEZE 1
#define FORCED 2
{
#ifdef USEMALLOC
struct memory *mem;
size_t newsize, oldsize;
char *newbase;
if (frozen)
return incr == 0; /* Can't realloc() frozen core. */
/*
* We realloc() to shrink most pieces.
* We can't control how realloc() moves the pieces.
*/
for (mem = mems; mem < &mems[NMEMS]; mem++) {
if (mem == &mems[piece])
continue;
if (flag == FREEZE && mem == &mems[ALLOMODL])
continue;
if (mem->mem_full == 0) {
/* Don't try to realloc() to size zero. */
free(mem->mem_base);
mem->mem_base = NULL;
mem->mem_left = 0;
} else {
newbase = realloc(mem->mem_base, mem->mem_full);
if (newbase != NULL) {
mem->mem_base = newbase;
mem->mem_left = 0;
}
}
}
/*
* After FREEZE, we must be able to grow ALLOMODL without
* moving it. The old allocator allowed ALLOMODL to grow in
* the brk area, but we can't call realloc() later, so we must
* leave some extra space in ALLOMODL now.
*/
if (flag == FREEZE) {
mem = &mems[ALLOMODL];
oldsize = mem->mem_full + mem->mem_left;
newsize = mem->mem_full + modl_initial_size / 2;
/* Don't shrink ALLOMODL. */
while (newsize > oldsize) {
newbase = realloc(mem->mem_base, newsize);
if (newbase != NULL) {
mem->mem_base = newbase;
mem->mem_left = newsize - mem->mem_full;
break;
}
newsize -= INCRSIZE < newsize ? INCRSIZE : newsize;
}
frozen = TRUE; /* Prevent later realloc(). */
}
/* Now grow our piece. */
if (incr == 0)
return TRUE;
mem = &mems[piece];
oldsize = mem->mem_full + mem->mem_left;
newsize = oldsize + incr;
if (newsize < mem->mem_full)
return FALSE; /* The size overflowed. */
newbase = realloc(mem->mem_base, newsize);
if (newbase == NULL)
return FALSE;
mem->mem_base = newbase;
mem->mem_left += incr;
return TRUE;
#else /* ifndef USEMALLOC */
register ind_t gain, size;
register struct memory *mem;
int min = piece, max = piece;
#define SHIFT_COUNT 2 /* let pieces only contribute if their free
memory is more than 1/2**SHIFT_COUNT * 100 %
of its occupied memory
*/
debug("compact(%d, %d, %d)\n", piece, (int)incr, flag, 0);
for (mem = &mems[0]; mem < &mems[NMEMS - 1]; mem++) {
assert(mem->mem_base + mem->mem_full + mem->mem_left == (mem+1)->mem_base);
}
mem = &mems[piece];
if (flag == NORMAL) {
/* try and gain a bit more than needed */
gain = (mem->mem_full + incr) >> SHIFT_COUNT;
if (incr < gain) incr = gain;
}
/*
* First, check that moving will result in enough space
*/
if (flag != FREEZE) {
gain = mem->mem_left;
for (mem = &mems[piece-1]; mem >= &mems[0]; mem--) {
/*
* Don't give it all away!
* If this does not give us enough, bad luck
*/
if (flag == FORCED)
size = 0;
else {
size = mem->mem_full >> SHIFT_COUNT;
if (size == 0) size = mem->mem_left >> 1;
}
if (mem->mem_left >= size)
gain += (mem->mem_left - size) & ~(ALIGN - 1);
if (gain >= incr) {
min = mem - &mems[0];
break;
}
}
if (min == piece)
for (mem = &mems[piece+1]; mem <= &mems[NMEMS - 1]; mem++) {
/*
* Don't give it all away!
* If this does not give us enough, bad luck
*/
if (flag == FORCED)
size = 0;
else {
size = mem->mem_full >> SHIFT_COUNT;
if (size == 0) size = mem->mem_left >> 1;
}
if (mem->mem_left >= size)
gain += (mem->mem_left - size) & ~(ALIGN - 1);
if (gain >= incr) {
max = mem - &mems[0];
break;
}
}
if (min == piece) {
min = 0;
if (max == piece) max = 0;
}
if (gain < incr) return 0;
}
else {
min = 0;
max = NMEMS - 1;
}
gain = 0;
for (mem = &mems[min]; mem != &mems[piece]; mem++) {
/* Here memory is inserted before a piece. */
assert(passnumber == FIRST || gain == (ind_t)0);
if (gain) copy_down(mem, gain);
if (flag == FREEZE || gain < incr) {
if (flag != NORMAL) size = 0;
else {
size = mem->mem_full >> SHIFT_COUNT;
if (size == 0) size = mem->mem_left >> 1;
}
if (mem->mem_left >= size) {
size = (mem->mem_left - size) & ~(ALIGN - 1);
gain += size;
mem->mem_left -= size;
}
}
}
/*
* Now mems[piece]:
*/
if (gain) copy_down(mem, gain);
gain += mem->mem_left;
mem->mem_left = 0;
if (gain < incr) {
register ind_t up = (ind_t)0;
for (mem = &mems[max]; mem > &mems[piece]; mem--) {
/* Here memory is appended after a piece. */
if (flag == FREEZE || gain + up < incr) {
if (flag != NORMAL) size = 0;
else {
size = mem->mem_full >> SHIFT_COUNT;
if (size == 0) size = mem->mem_left >> 1;
}
if (mem->mem_left >= size) {
size = (mem->mem_left - size) & ~(ALIGN - 1);
up += size;
mem->mem_left -= size;
}
}
if (up) copy_up(mem, up);
}
gain += up;
}
mems[piece].mem_left += gain;
assert(flag == FREEZE || gain >= incr);
for (mem = &mems[0]; mem < &mems[NMEMS - 1]; mem++) {
assert(mem->mem_base + mem->mem_full + mem->mem_left == (mem+1)->mem_base);
}
return gain >= incr;
#endif /* ndef USEMALLOC */
}
#ifndef USEMALLOC
/*
* The bytes of `mem' must be moved `dist' down in the address space.
* We copy the bytes from low to high, because the tail of the new area may
* overlap with the old area, but we do not want to overwrite them before they
* are copied.
*/
static void
copy_down(struct memory* mem, ind_t dist)
{
register char *old;
register char *new;
register ind_t size;
size = mem->mem_full;
old = mem->mem_base;
new = old - dist;
mem->mem_base = new;
while (size--)
*new++ = *old++;
}
/*
* The bytes of `mem' must be moved `dist' up in the address space.
* We copy the bytes from high to low, because the tail of the new area may
* overlap with the old area, but we do not want to overwrite them before they
* are copied.
*/
static void copy_up(struct memory* mem, ind_t dist)
{
register char *old;
register char *new;
register ind_t size;
size = mem->mem_full;
old = mem->mem_base + size;
new = old + dist;
while (size--)
*--new = *--old;
mem->mem_base = new;
}
#endif /* ndef USEMALLOC */
static int alloctype = NORMAL;
/*
* Add `size' bytes to the bytes already allocated for `piece'. If it has no
* free bytes left, ask them from memory or, if that fails, from the free
* bytes of other pieces. The offset of the new area is returned. No matter
* how many times the area is moved, because of another allocate, this offset
* remains valid.
*/
ind_t alloc(int piece, size_t size)
{
register ind_t incr = 0;
ind_t left = mems[piece].mem_left;
register ind_t full = mems[piece].mem_full;
assert(passnumber == FIRST || (!incore && piece == ALLOMODL));
if (size == 0)
return full;
if (size != (ind_t)size)
return BADOFF;
switch(piece) {
case ALLOMODL:
case ALLORANL:
size = int_align(size);
if (size == 0)
return BADOFF;
}
if (size > left) {
incr = ((size - left + (INCRSIZE - 1)) / INCRSIZE) * INCRSIZE;
if (incr == 0)
return BADOFF;
}
if (incr == 0 ||
(incr < left + full && move_up(piece, left + full) >= incr) ||
move_up(piece, incr) == incr ||
compact(piece, size, alloctype)) {
mems[piece].mem_full += size;
mems[piece].mem_left -= size;
return full;
} else {
incore = FALSE;
return BADOFF;
}
}
/*
* Same as alloc() but for a piece which really needs it. If the first
* attempt fails, release the space occupied by other pieces and try again.
*/
ind_t
hard_alloc(int piece, size_t size)
{
register ind_t ret;
register int i;
if (size != (ind_t)size)
return BADOFF;
if ((ret = alloc(piece, size)) != BADOFF) {
return ret;
}
/*
* Deallocate what we don't need.
*/
for (i = 0; i < NMEMS; i++) {
switch (i) {
case ALLOGLOB:
case ALLOGCHR:
case ALLOSYMB:
case ALLOARCH:
case ALLOMODL:
case ALLORANL:
break; /* Do not try to deallocate this. */
default:
dealloc(i);
break;
}
}
free_saved_moduls();
if ((ret = alloc(piece, size)) != BADOFF) {
return ret;
}
alloctype = FORCED;
ret = alloc(piece, size);
alloctype = NORMAL;
return ret;
}
/*
* We don't need the previous modules, so we put the current module
* at the start of the piece allocated for module contents, thereby
* overwriting the saved modules, and release its space.
*/
static void
free_saved_moduls(void)
{
register ind_t size;
register char *old, *new;
register struct memory *mem = &mems[ALLOMODL];
size = mem->mem_full - core_position;
new = mem->mem_base;
old = new + core_position;
while (size--)
*new++ = *old++;
mem->mem_full -= core_position;
mem->mem_left += core_position;
core_position = (ind_t)0;
}
/*
* The piece of memory with index `piece' is no longer needed.
* We take care that it can be used by compact() later, if needed.
*/
void
dealloc(int piece)
{
/*
* Some pieces need their memory throughout the program.
*/
assert(piece != ALLOGLOB);
assert(piece != ALLOGCHR);
assert(piece != ALLOSYMB);
assert(piece != ALLOARCH);
mems[piece].mem_left += mems[piece].mem_full;
mems[piece].mem_full = (ind_t)0;
}
char *
core_alloc(int piece, size_t size)
{
register ind_t off;
if ((off = alloc(piece, size)) == BADOFF)
return (char *)0;
return address(piece, off);
}
void core_free(int piece, char* p)
{
char *q = address(piece, mems[piece].mem_full);
assert(p < q);
mems[piece].mem_full -= (ind_t) q - (ind_t) p;
mems[piece].mem_left += (ind_t) q - (ind_t) p;
}
/*
* Reset index into piece of memory for modules and
* take care that the allocated pieces will not be moved.
*/
void freeze_core(void)
{
register int i;
core_position = (ind_t)0;
if (incore)
return;
for (i = 0; i < NMEMS; i++) {
switch (i) {
case ALLOGLOB:
case ALLOGCHR:
case ALLOSYMB:
case ALLOARCH:
break; /* Do not try to deallocate this. */
default:
dealloc(i);
break;
}
}
compact(NMEMS - 1, (ind_t)0, FREEZE);
}
/* ------------------------------------------------------------------------- */
/*
* To transform the various pieces of the output in core to the file format,
* we must order the bytes in the unsigned shorts and longs as ACK prescribes.
*/
void write_bytes(void)
{
unsigned short nsect;
long offchar;
register struct memory *mem;
extern long NLChars, NGChars;
extern int flagword;
extern struct outhead outhead;
extern struct outsect outsect[];
extern char *outputname;
int sectionno = 0;
nsect = outhead.oh_nsect;
offchar = OFF_CHAR(outhead);
/*
* We allocated two areas: one for local and one for global names.
* Also, we used another kind of on_foff than on file.
* At the end of the global area we have put the section names.
*/
if (!(flagword & SFLAG)) {
do_crs((struct outname *)mems[ALLOLOCL].mem_base, NLocals);
namecpy((struct outname *)mems[ALLOLOCL].mem_base,
NLocals,
offchar
);
namecpy((struct outname *)mems[ALLOGLOB].mem_base,
NGlobals + nsect,
offchar + NLChars
);
}
/*
* These pieces must always be written.
*/
wr_ohead(&outhead);
wr_sect(outsect, nsect);
for (mem = &mems[ALLOEMIT]; mem < &mems[ALLORELO]; mem++)
wrt_emit(mem->mem_base, sectionno++, mem->mem_full);
/*
* The rest depends on the flags.
*/
if (flagword & (RFLAG|CFLAG))
wr_relo((struct outrelo *) mems[ALLORELO].mem_base,
outhead.oh_nrelo);
if (!(flagword & SFLAG)) {
wr_name((struct outname *) mems[ALLOLOCL].mem_base,
NLocals);
wr_name((struct outname *) mems[ALLOGLOB].mem_base,
NGlobals+nsect);
wr_string(mems[ALLOLCHR].mem_base + 1, (long)NLChars);
wr_string(mems[ALLOGCHR].mem_base + 1, (long)NGChars);
#ifdef SYMDBUG
wr_dbug(mems[ALLODBUG].mem_base, mems[ALLODBUG].mem_full);
#endif /* SYMDBUG */
}
}
void namecpy(struct outname* name, unsigned nname, long offchar)
{
while (nname--) {
if (name->on_foff)
name->on_foff += offchar - 1;
name++;
}
}