ack/lang/m2/comp/cstoper.c

687 lines
13 KiB
C

/*
* (c) copyright 1987 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* C O N S T A N T E X P R E S S I O N H A N D L I N G */
/* $Header$ */
#include "debug.h"
#include "target_sizes.h"
#include <em_arith.h>
#include <em_label.h>
#include <assert.h>
#include <alloc.h>
#include "idf.h"
#include "type.h"
#include "LLlex.h"
#include "node.h"
#include "Lpars.h"
#include "standards.h"
#include "warning.h"
#include "const.h"
extern char *symbol2str();
arith full_mask[MAXSIZE];/* full_mask[1] == 0xFF, full_mask[2] == 0xFFFF, .. */
arith max_int[MAXSIZE]; /* max_int[1] == 0x7F, max_int[2] == 0x7FFF, .. */
arith min_int[MAXSIZE]; /* min_int[1] == 0xFFFFFF80, min_int[2] = 0xFFFF8000,
...
*/
unsigned int wrd_bits; /* number of bits in a word */
extern char options[];
overflow(expp)
t_node *expp;
{
if (expp->nd_type != address_type) {
node_warning(expp, W_ORDINARY, "overflow in constant expression");
}
}
underflow(expp)
t_node *expp;
{
if (expp->nd_type != address_type) {
node_warning(expp, W_ORDINARY, "underflow in constant expression");
}
}
STATIC
commonbin(expp)
register t_node *expp;
{
expp->nd_class = Value;
expp->nd_token = expp->nd_right->nd_token;
CutSize(expp);
FreeLR(expp);
}
cstunary(expp)
register t_node *expp;
{
/* The unary operation in "expp" is performed on the constant
expression below it, and the result restored in expp.
*/
register t_node *right = expp->nd_right;
register arith o1 = right->nd_INT;
switch(expp->nd_symb) {
/* Should not get here
case '+':
break;
*/
case '-':
if (o1 == min_int[(int)(right->nd_type->tp_size)]) {
overflow(expp);
}
o1 = -o1;
break;
case NOT:
case '~':
o1 = !o1;
break;
default:
crash("(cstunary)");
}
commonbin(expp);
expp->nd_INT = o1;
}
STATIC
divide(pdiv, prem)
arith *pdiv, *prem;
{
/* Unsigned divide *pdiv by *prem, and store result in *pdiv,
remainder in *prem
*/
register arith o1 = *pdiv;
register arith o2 = *prem;
/* this is more of a problem than you might
think on C compilers which do not have
unsigned long.
*/
if (o2 & arith_sign) {/* o2 > max_arith */
if (! (o1 >= 0 || o1 < o2)) {
/* this is the unsigned test
o1 < o2 for o2 > max_arith
*/
*prem = o2 - o1;
*pdiv = 1;
}
else {
*pdiv = 0;
}
}
else { /* o2 <= max_arith */
arith half, bit, hdiv, hrem, rem;
half = (o1 >> 1) & ~arith_sign;
bit = o1 & 01;
/* now o1 == 2 * half + bit
and half <= max_arith
and bit <= max_arith
*/
hdiv = half / o2;
hrem = half % o2;
rem = 2 * hrem + bit;
*pdiv = 2*hdiv;
*prem = rem;
if (rem < 0 || rem >= o2) {
/* that is the unsigned compare
rem >= o2 for o2 <= max_arith
*/
*pdiv += 1;
*prem -= o2;
}
}
}
cstibin(expp)
register t_node *expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in expp.
This version is for INTEGER expressions.
*/
register arith o1 = expp->nd_left->nd_INT;
register arith o2 = expp->nd_right->nd_INT;
register int sz = expp->nd_type->tp_size;
assert(expp->nd_class == Oper);
assert(expp->nd_left->nd_class == Value);
assert(expp->nd_right->nd_class == Value);
switch (expp->nd_symb) {
case '*':
if (o1 > 0 && o2 > 0) {
if (max_int[sz] / o1 < o2) overflow(expp);
}
else if (o1 < 0 && o2 < 0) {
if (o1 == min_int[sz] || o2 == min_int[sz] ||
max_int[sz] / (-o1) < (-o2)) overflow(expp);
}
else if (o1 > 0) {
if (min_int[sz] / o1 > o2) overflow(expp);
}
else if (o2 > 0) {
if (min_int[sz] / o2 > o1) overflow(expp);
}
o1 *= o2;
break;
case DIV:
if (o2 == 0) {
node_error(expp, "division by 0");
return;
}
#if (-1)/2==0
o1 /= o2;
#else
if (o1 == 0) break;
if ((o1 < 0) != (o2 < 0)) {
o1 = o1/o2 + 1;
}
else {
o1 /= o2;
}
#endif
break;
case MOD:
if (o2 == 0) {
node_error(expp, "modulo by 0");
return;
}
#if (-1)/2==0
o1 %= o2;
#else
if (o1 == 0) break;
if ((o1 < 0) != (o2 < 0)) {
o1 -= (o1 / o2 + 1) * o2;
}
else {
o1 %= o2;
}
#endif
break;
case '+':
if (o1 > 0 && o2 > 0) {
if (max_int[sz] - o1 < o2) overflow(expp);
}
else if (o1 < 0 && o2 < 0) {
if (min_int[sz] - o1 > o2) overflow(expp);
}
o1 += o2;
break;
case '-':
if (o1 >= 0 && o2 < 0) {
if (max_int[sz] + o2 < o1) overflow(expp);
}
else if (o1 < 0 && o2 >= 0) {
if (min_int[sz] + o2 > o1) overflow(expp);
}
o1 -= o2;
break;
case '<':
o1 = (o1 < o2);
break;
case '>':
o1 = (o1 > o2);
break;
case LESSEQUAL:
o1 = (o1 <= o2);
break;
case GREATEREQUAL:
o1 = (o1 >= o2);
break;
case '=':
o1 = (o1 == o2);
break;
case '#':
o1 = (o1 != o2);
break;
default:
crash("(cstibin)");
}
commonbin(expp);
expp->nd_INT = o1;
}
cstfbin(expp)
register t_node *expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in expp.
This version is for REAL expressions.
*/
register struct real *p = expp->nd_left->nd_token.tk_data.tk_real;
register flt_arith *o1 = &p->r_val;
register flt_arith *o2 = &expp->nd_right->nd_RVAL;
int compar = 0;
int cmpval = 0;
assert(expp->nd_class == Oper);
assert(expp->nd_left->nd_class == Value);
assert(expp->nd_right->nd_class == Value);
switch (expp->nd_symb) {
case '*':
flt_mul(o1, o2, o1);
break;
case '/':
flt_div(o1, o2, o1);
break;
case '+':
flt_add(o1, o2, o1);
break;
case '-':
flt_sub(o1, o2, o1);
break;
case '<':
case '>':
case LESSEQUAL:
case GREATEREQUAL:
case '=':
case '#':
compar++;
cmpval = flt_cmp(o1, o2);
switch(expp->nd_symb) {
case '<': cmpval = (cmpval < 0); break;
case '>': cmpval = (cmpval > 0); break;
case LESSEQUAL: cmpval = (cmpval <= 0); break;
case GREATEREQUAL: cmpval = (cmpval >= 0); break;
case '=': cmpval = (cmpval == 0); break;
case '#': cmpval = (cmpval != 0); break;
}
if (expp->nd_right->nd_REAL) free(expp->nd_right->nd_REAL);
free_real(expp->nd_right->nd_token.tk_data.tk_real);
break;
default:
crash("(cstfbin)");
}
switch(flt_status) {
case FLT_OVFL:
node_warning(expp, "floating point overflow on %s",
symbol2str(expp->nd_symb));
break;
case FLT_DIV0:
node_error(expp, "division by 0.0");
break;
}
if (p->r_real) {
free(p->r_real);
p->r_real = 0;
}
if (compar) {
free_real(p);
}
commonbin(expp);
if (compar) {
expp->nd_symb = INTEGER;
expp->nd_INT = cmpval;
}
else {
expp->nd_token.tk_data.tk_real = p;
}
}
cstubin(expp)
register t_node *expp;
{
/* The binary operation in "expp" is performed on the constant
expressions below it, and the result restored in
expp.
*/
arith o1 = expp->nd_left->nd_INT;
arith o2 = expp->nd_right->nd_INT;
register int sz = expp->nd_type->tp_size;
arith tmp1, tmp2;
assert(expp->nd_class == Oper);
assert(expp->nd_left->nd_class == Value);
assert(expp->nd_right->nd_class == Value);
switch (expp->nd_symb) {
case '*':
if (o1 == 0 || o2 == 0) {
o1 = 0;
break;
}
tmp1 = full_mask[sz];
tmp2 = o2;
divide(&tmp1, &tmp2);
if (! chk_bounds(o1, tmp1, T_CARDINAL)) overflow(expp);
o1 *= o2;
break;
case DIV:
if (o2 == 0) {
node_error(expp, "division by 0");
return;
}
divide(&o1, &o2);
break;
case MOD:
if (o2 == 0) {
node_error(expp, "modulo by 0");
return;
}
divide(&o1, &o2);
o1 = o2;
break;
case '+':
if (! chk_bounds(o2, full_mask[sz] - o1, T_CARDINAL)) {
overflow(expp);
}
o1 += o2;
break;
case '-':
if (! chk_bounds(o2, o1, T_CARDINAL)) {
if (expp->nd_type->tp_fund == T_INTORCARD) {
expp->nd_type = int_type;
if (! chk_bounds(min_int[sz], o1 - o2, T_CARDINAL)) {
underflow(expp);
}
}
else underflow(expp);
}
o1 -= o2;
break;
case '<':
o1 = ! chk_bounds(o2, o1, T_CARDINAL);
break;
case '>':
o1 = ! chk_bounds(o1, o2, T_CARDINAL);
break;
case LESSEQUAL:
o1 = chk_bounds(o1, o2, T_CARDINAL);
break;
case GREATEREQUAL:
o1 = chk_bounds(o2, o1, T_CARDINAL);
break;
case '=':
o1 = (o1 == o2);
break;
case '#':
o1 = (o1 != o2);
break;
case AND:
case '&':
o1 = (o1 && o2);
break;
case OR:
o1 = (o1 || o2);
break;
default:
crash("(cstubin)");
}
commonbin(expp);
expp->nd_INT = o1;
if (expp->nd_type == bool_type) expp->nd_symb = INTEGER;
}
cstset(expp)
register t_node *expp;
{
extern arith *MkSet();
register arith *set1, *set2;
register arith *resultset;
register unsigned int setsize;
register int j;
assert(expp->nd_right->nd_class == Set);
assert(expp->nd_symb == IN || expp->nd_left->nd_class == Set);
set2 = expp->nd_right->nd_set;
setsize = (unsigned) (expp->nd_right->nd_type->tp_size) / (unsigned) word_size;
if (expp->nd_symb == IN) {
/* The setsize must fit in an unsigned, as it is
allocated with Malloc, so we can do the arithmetic
in an unsigned too.
*/
unsigned i;
assert(expp->nd_left->nd_class == Value);
expp->nd_left->nd_INT -= expp->nd_right->nd_type->set_low;
i = expp->nd_left->nd_INT;
expp->nd_class = Value;
/* Careful here; use expp->nd_left->nd_INT to see if
it falls in the range of the set. Do not use i
for this, as i may be truncated.
*/
expp->nd_INT = (expp->nd_left->nd_INT >= 0 &&
expp->nd_left->nd_INT < setsize * wrd_bits &&
(set2[i / wrd_bits] & (1 << (i % wrd_bits))));
FreeSet(set2);
expp->nd_symb = INTEGER;
FreeLR(expp);
return;
}
set1 = expp->nd_left->nd_set;
switch(expp->nd_symb) {
case '+': /* Set union */
case '-': /* Set difference */
case '*': /* Set intersection */
case '/': /* Symmetric set difference */
expp->nd_set = resultset = MkSet(expp->nd_type->set_sz);
for (j = 0; j < setsize; j++) {
switch(expp->nd_symb) {
case '+':
*resultset = *set1++ | *set2++;
break;
case '-':
*resultset = *set1++ & ~*set2++;
break;
case '*':
*resultset = *set1++ & *set2++;
break;
case '/':
*resultset = *set1++ ^ *set2++;
break;
}
resultset++;
}
expp->nd_class = Set;
break;
case GREATEREQUAL:
case LESSEQUAL:
case '=':
case '#':
/* Constant set comparisons
*/
for (j = 0; j < setsize; j++) {
switch(expp->nd_symb) {
case GREATEREQUAL:
if ((*set1 | *set2++) != *set1) break;
set1++;
continue;
case LESSEQUAL:
if ((*set2 | *set1++) != *set2) break;
set2++;
continue;
case '=':
case '#':
if (*set1++ != *set2++) break;
continue;
}
break;
}
if (j < setsize) {
expp->nd_INT = expp->nd_symb == '#';
}
else {
expp->nd_INT = expp->nd_symb != '#';
}
expp->nd_class = Value;
expp->nd_symb = INTEGER;
break;
default:
crash("(cstset)");
}
FreeSet(expp->nd_left->nd_set);
FreeSet(expp->nd_right->nd_set);
FreeLR(expp);
}
cstcall(expp, call)
register t_node *expp;
{
/* a standard procedure call is found that can be evaluated
compile time, so do so.
*/
register t_node *expr;
register t_type *tp;
assert(expp->nd_class == Call);
expr = expp->nd_right->nd_left;
tp = expr->nd_type;
expp->nd_class = Value;
expp->nd_symb = INTEGER;
expp->nd_INT = expr->nd_INT;
switch(call) {
case S_ABS:
if (expp->nd_INT < 0) {
if (expp->nd_INT <= min_int[(int)(tp->tp_size)]) {
overflow(expr);
}
expp->nd_INT = - expp->nd_INT;
}
CutSize(expp);
break;
case S_CAP:
if (expp->nd_INT >= 'a' && expp->nd_INT <= 'z') {
expp->nd_INT += ('A' - 'a');
}
break;
case S_MAX:
if (tp->tp_fund == T_INTEGER) {
expp->nd_INT = max_int[(int)(tp->tp_size)];
}
else if (tp == card_type) {
expp->nd_INT = full_mask[(int)(int_size)];
}
else if (tp->tp_fund == T_SUBRANGE) {
expp->nd_INT = tp->sub_ub;
}
else expp->nd_INT = tp->enm_ncst - 1;
break;
case S_MIN:
if (tp->tp_fund == T_INTEGER) {
expp->nd_INT = min_int[(int)(tp->tp_size)];
}
else if (tp->tp_fund == T_SUBRANGE) {
expp->nd_INT = tp->sub_lb;
}
else expp->nd_INT = 0;
break;
case S_ODD:
expp->nd_INT &= 1;
break;
case S_SIZE:
expp->nd_INT = tp->tp_size;
break;
default:
crash("(cstcall)");
}
expp->nd_right = 0; /* don't deallocate, for further
argument checking
*/
FreeLR(expp);
}
CutSize(expr)
register t_node *expr;
{
/* The constant value of the expression expr is made to
conform to the size of the type of the expression.
*/
register t_type *tp = BaseType(expr->nd_type);
assert(expr->nd_class == Value);
if (tp->tp_fund == T_REAL) return;
if (tp->tp_fund != T_INTEGER) {
expr->nd_INT &= full_mask[(int)(tp->tp_size)];
}
else {
int nbits = (int) (sizeof(arith) - tp->tp_size) * 8;
expr->nd_INT = (expr->nd_INT << nbits) >> nbits;
}
}
InitCst()
{
register int i = 0;
register arith bt = (arith)0;
while (!(bt < 0)) {
i++;
bt = (bt << 8) + 0377;
if (i == MAXSIZE)
fatal("array full_mask too small for this machine");
full_mask[i] = bt;
max_int[i] = bt & ~(1L << ((8 * i) - 1));
min_int[i] = - max_int[i];
if (! options['s']) min_int[i]--;
}
if ((int)long_size > sizeof(arith)) {
fatal("sizeof (arith) insufficient on this machine");
}
wrd_bits = 8 * (int) word_size;
}