xv6-65oo2/proc.c

469 lines
10 KiB
C
Raw Normal View History

2006-06-12 15:22:12 +00:00
#include "types.h"
#include "mmu.h"
#include "x86.h"
#include "param.h"
2006-09-06 18:40:28 +00:00
#include "file.h"
2006-06-22 20:47:23 +00:00
#include "proc.h"
2006-06-12 15:22:12 +00:00
#include "defs.h"
#include "spinlock.h"
struct spinlock proc_table_lock;
2006-06-12 15:22:12 +00:00
struct proc proc[NPROC];
2006-06-22 20:47:23 +00:00
struct proc *curproc[NCPU];
2007-08-23 14:35:28 +00:00
static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void forkret1(struct trapframe*);
2006-06-12 15:22:12 +00:00
void
pinit(void)
{
initlock(&proc_table_lock, "proc_table");
}
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and return it.
// Otherwise return 0.
static struct proc*
allocproc(void)
2006-06-12 15:22:12 +00:00
{
int i;
struct proc *p;
2006-06-12 15:22:12 +00:00
acquire(&proc_table_lock);
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state == UNUSED){
p->state = EMBRYO;
p->pid = nextpid++;
release(&proc_table_lock);
return p;
}
}
release(&proc_table_lock);
return 0;
2006-06-12 15:22:12 +00:00
}
2006-09-08 14:26:51 +00:00
// Grow current process's memory by n bytes.
// Return old size on success, -1 on failure.
int
growproc(int n)
{
char *newmem, *oldmem;
newmem = kalloc(cp->sz + n);
if(newmem == 0)
return 0xffffffff;
memmove(newmem, cp->mem, cp->sz);
memset(newmem + cp->sz, 0, n);
oldmem = cp->mem;
cp->mem = newmem;
kfree(oldmem, cp->sz);
cp->sz += n;
return cp->sz - n;
}
// Set up CPU's segment descriptors and task state for a
// given process.
// If p==0, set up for "idle" state for when scheduler()
// is idling, not running any process.
void
setupsegs(struct proc *p)
{
struct cpu *c = &cpus[cpu()];
2006-09-06 17:27:19 +00:00
c->ts.ss0 = SEG_KDATA << 3;
if(p)
c->ts.esp0 = (uint)(p->kstack + KSTACKSIZE);
else
c->ts.esp0 = 0xffffffff;
c->gdt[0] = SEG_NULL;
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0x100000 + 64*1024-1, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_TSS] = SEG16(STS_T32A, (uint)&c->ts, sizeof(c->ts)-1, 0);
c->gdt[SEG_TSS].s = 0;
if(p){
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (uint)p->mem, p->sz-1, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, (uint)p->mem, p->sz-1, DPL_USER);
} else {
c->gdt[SEG_UCODE] = SEG_NULL;
c->gdt[SEG_UDATA] = SEG_NULL;
}
lgdt(c->gdt, sizeof(c->gdt));
ltr(SEG_TSS << 3);
}
2006-06-12 15:22:12 +00:00
// Create a new process copying p as the parent.
// Sets up stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
2006-09-06 17:27:19 +00:00
struct proc*
copyproc(struct proc *p)
2006-06-12 15:22:12 +00:00
{
int i;
2006-06-12 15:22:12 +00:00
struct proc *np;
// Allocate process.
if((np = allocproc()) == 0)
2006-06-12 15:22:12 +00:00
return 0;
// Allocate kernel stack.
if((np->kstack = kalloc(KSTACKSIZE)) == 0){
np->state = UNUSED;
2006-06-12 15:22:12 +00:00
return 0;
}
np->tf = (struct trapframe*)(np->kstack + KSTACKSIZE) - 1;
2006-09-06 17:27:19 +00:00
if(p){ // Copy process state from p.
2007-08-23 14:40:30 +00:00
np->parent = p;
memmove(np->tf, p->tf, sizeof(*np->tf));
np->sz = p->sz;
if((np->mem = kalloc(np->sz)) == 0){
kfree(np->kstack, KSTACKSIZE);
np->kstack = 0;
np->state = UNUSED;
return 0;
}
memmove(np->mem, p->mem, np->sz);
for(i = 0; i < NOFILE; i++){
if((np->ofile[i] = p->ofile[i]) != 0)
fileincref(np->ofile[i]);
}
np->cwd = idup(p->cwd);
}
// Set up new jmpbuf to start executing at forkret (see below).
memset(&np->jmpbuf, 0, sizeof(np->jmpbuf));
np->jmpbuf.eip = (uint)forkret;
np->jmpbuf.esp = (uint)np->tf - 4;
2006-06-12 15:22:12 +00:00
// Clear %eax so that fork system call returns 0 in child.
np->tf->eax = 0;
2006-06-12 15:22:12 +00:00
return np;
}
// Set up first user process.
void
userinit(void)
{
struct proc *p;
extern uchar _binary_initcode_start[], _binary_initcode_size[];
p = copyproc(0);
p->sz = PAGE;
p->mem = kalloc(p->sz);
p->cwd = namei("/");
2007-08-22 17:45:52 +00:00
memset(p->tf, 0, sizeof(*p->tf));
p->tf->es = p->tf->ds = p->tf->ss = (SEG_UDATA << 3) | DPL_USER;
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->eflags = FL_IF;
p->tf->esp = p->sz;
2007-08-23 14:35:28 +00:00
// Make return address readable; needed for some gcc.
p->tf->esp -= 4;
*(uint*)(p->mem + p->tf->esp) = 0xefefefef;
p->tf->eip = 0;
memmove(p->mem, _binary_initcode_start, (int)_binary_initcode_size);
safestrcpy(p->name, "initcode", sizeof(p->name));
p->state = RUNNABLE;
2007-08-23 14:35:28 +00:00
initproc = p;
}
2006-09-07 14:12:30 +00:00
//PAGEBREAK: 42
2006-09-06 17:27:19 +00:00
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - longjmp to start running that process
// - eventually that process transfers control back
// via longjmp back to the scheduler.
2006-06-12 15:22:12 +00:00
void
2006-07-11 01:07:40 +00:00
scheduler(void)
2006-06-12 15:22:12 +00:00
{
struct proc *p;
int i;
for(;;){
// Loop over process table looking for process to run.
acquire(&proc_table_lock);
2006-08-29 19:06:37 +00:00
for(i = 0; i < NPROC; i++){
p = &proc[i];
if(p->state != RUNNABLE)
continue;
2006-09-06 17:27:19 +00:00
// Switch to chosen process. It is the process's job
// to release proc_table_lock and then reacquire it
// before jumping back to us.
setupsegs(p);
2007-08-10 16:37:27 +00:00
cp = p;
p->state = RUNNING;
if(setjmp(&cpus[cpu()].jmpbuf) == 0)
longjmp(&p->jmpbuf);
2006-09-06 17:27:19 +00:00
// Process is done running for now.
// It should have changed its p->state before coming back.
2007-08-10 16:37:27 +00:00
cp = 0;
2006-09-06 17:27:19 +00:00
setupsegs(0);
}
release(&proc_table_lock);
2006-06-12 15:22:12 +00:00
}
}
2006-06-12 15:22:12 +00:00
// Enter scheduler. Must already hold proc_table_lock
// and have changed curproc[cpu()]->state.
void
sched(void)
{
2007-08-09 17:32:40 +00:00
if(cp->state == RUNNING)
2007-08-08 08:57:37 +00:00
panic("sched running");
2006-09-07 16:54:00 +00:00
if(!holding(&proc_table_lock))
2007-08-08 08:57:37 +00:00
panic("sched proc_table_lock");
2006-09-07 16:54:00 +00:00
if(cpus[cpu()].nlock != 1)
panic("sched locks");
2007-08-10 16:37:27 +00:00
if(setjmp(&cp->jmpbuf) == 0)
longjmp(&cpus[cpu()].jmpbuf);
2006-07-11 01:07:40 +00:00
}
// Give up the CPU for one scheduling round.
2006-07-11 01:07:40 +00:00
void
yield(void)
2006-07-11 01:07:40 +00:00
{
acquire(&proc_table_lock);
2007-08-09 17:32:40 +00:00
cp->state = RUNNABLE;
sched();
release(&proc_table_lock);
2006-06-12 15:22:12 +00:00
}
2006-06-15 19:58:01 +00:00
2006-08-29 21:35:30 +00:00
// A fork child's very first scheduling by scheduler()
// will longjmp here. "Return" to user space.
void
forkret(void)
{
// Still holding proc_table_lock from scheduler.
release(&proc_table_lock);
2006-09-06 17:27:19 +00:00
// Jump into assembly, never to return.
2007-08-10 16:37:27 +00:00
forkret1(cp->tf);
}
// Atomically release lock and sleep on chan.
// Reacquires lock when reawakened.
2006-06-15 19:58:01 +00:00
void
sleep(void *chan, struct spinlock *lk)
2006-06-15 19:58:01 +00:00
{
2007-08-09 17:32:40 +00:00
if(cp == 0)
2006-07-11 01:07:40 +00:00
panic("sleep");
2006-07-17 05:00:25 +00:00
if(lk == 0)
panic("sleep without lk");
2006-09-06 17:27:19 +00:00
// Must acquire proc_table_lock in order to
// change p->state and then call sched.
2006-09-06 17:27:19 +00:00
// Once we hold proc_table_lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with proc_table_lock locked),
// so it's okay to release lk.
if(lk != &proc_table_lock){
acquire(&proc_table_lock);
release(lk);
}
// Go to sleep.
2007-08-09 17:32:40 +00:00
cp->chan = chan;
cp->state = SLEEPING;
sched();
// Tidy up.
2007-08-09 17:32:40 +00:00
cp->chan = 0;
// Reacquire original lock.
if(lk != &proc_table_lock){
release(&proc_table_lock);
acquire(lk);
}
2006-06-15 19:58:01 +00:00
}
//PAGEBREAK!
// Wake up all processes sleeping on chan.
// Proc_table_lock must be held.
2006-06-15 19:58:01 +00:00
void
wakeup1(void *chan)
2006-06-15 19:58:01 +00:00
{
struct proc *p;
for(p = proc; p < &proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
2006-06-15 19:58:01 +00:00
p->state = RUNNABLE;
}
// Wake up all processes sleeping on chan.
// Proc_table_lock is acquired and released.
void
wakeup(void *chan)
{
acquire(&proc_table_lock);
wakeup1(chan);
release(&proc_table_lock);
2006-06-15 19:58:01 +00:00
}
// Kill the process with the given pid.
// Process won't actually exit until it returns
// to user space (see trap in trap.c).
int
proc_kill(int pid)
{
struct proc *p;
acquire(&proc_table_lock);
for(p = proc; p < &proc[NPROC]; p++){
if(p->pid == pid){
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&proc_table_lock);
return 0;
}
}
release(&proc_table_lock);
return -1;
}
// Exit the current process. Does not return.
2006-09-06 17:27:19 +00:00
// Exited processes remain in the zombie state
// until their parent calls wait() to find out they exited.
void
2006-07-17 01:25:22 +00:00
proc_exit(void)
{
struct proc *p;
int fd;
2007-08-23 14:35:28 +00:00
if(cp == initproc)
2007-08-08 08:57:37 +00:00
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
2006-09-06 18:38:56 +00:00
if(cp->ofile[fd]){
2006-09-06 18:43:45 +00:00
fileclose(cp->ofile[fd]);
2006-09-06 18:38:56 +00:00
cp->ofile[fd] = 0;
}
}
2006-09-06 17:27:19 +00:00
iput(cp->cwd);
cp->cwd = 0;
acquire(&proc_table_lock);
2007-08-23 14:40:30 +00:00
// Parent might be sleeping in proc_wait.
wakeup1(cp->parent);
2007-08-23 14:35:28 +00:00
// Pass abandoned children to init.
for(p = proc; p < &proc[NPROC]; p++){
2007-08-23 14:40:30 +00:00
if(p->parent == cp){
p->parent = initproc;
2007-08-23 14:35:28 +00:00
if(p->state == ZOMBIE)
wakeup1(initproc);
2007-08-08 08:57:37 +00:00
}
2007-08-23 14:35:28 +00:00
}
2006-09-06 17:27:19 +00:00
// Jump into the scheduler, never to return.
cp->killed = 0;
cp->state = ZOMBIE;
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
proc_wait(void)
{
struct proc *p;
int i, havekids, pid;
acquire(&proc_table_lock);
for(;;){
2006-08-29 21:35:30 +00:00
// Scan through table looking for zombie children.
havekids = 0;
for(i = 0; i < NPROC; i++){
p = &proc[i];
2006-09-07 01:56:22 +00:00
if(p->state == UNUSED)
continue;
2007-08-23 14:40:30 +00:00
if(p->parent == cp){
if(p->state == ZOMBIE){
// Found one.
kfree(p->mem, p->sz);
kfree(p->kstack, KSTACKSIZE);
pid = p->pid;
p->state = UNUSED;
p->pid = 0;
2007-08-23 14:40:30 +00:00
p->parent = 0;
p->name[0] = 0;
release(&proc_table_lock);
return pid;
}
havekids = 1;
}
}
// No point waiting if we don't have any children.
2007-08-08 10:29:42 +00:00
if(!havekids || cp->killed){
release(&proc_table_lock);
return -1;
}
2006-09-06 17:27:19 +00:00
// Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(cp, &proc_table_lock);
}
}
2006-09-07 15:45:38 +00:00
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
2007-08-08 09:42:36 +00:00
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
2007-08-20 19:37:15 +00:00
int i, j;
2006-09-07 15:45:38 +00:00
struct proc *p;
char *state;
2007-08-20 19:37:15 +00:00
uint pc[10];
2006-09-07 15:45:38 +00:00
for(i = 0; i < NPROC; i++) {
p = &proc[i];
if(p->state == UNUSED)
continue;
2007-08-08 09:43:07 +00:00
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
2007-08-08 09:42:36 +00:00
else
state = "???";
2007-08-20 19:37:15 +00:00
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING) {
getcallerpcs((uint*)p->jmpbuf.ebp+2, pc);
for(j=0; j<10 && pc[j] != 0; j++)
cprintf(" %p", pc[j]);
}
cprintf("\n");
2006-09-07 15:45:38 +00:00
}
}
2006-09-08 14:26:51 +00:00