2006-06-15 16:02:20 +00:00
|
|
|
#include "types.h"
|
|
|
|
#include "param.h"
|
2011-07-29 11:31:27 +00:00
|
|
|
#include "memlayout.h"
|
2019-05-31 13:45:59 +00:00
|
|
|
#include "riscv.h"
|
2019-07-02 13:14:47 +00:00
|
|
|
#include "spinlock.h"
|
2006-06-15 16:02:20 +00:00
|
|
|
#include "proc.h"
|
|
|
|
#include "syscall.h"
|
2019-05-31 13:45:59 +00:00
|
|
|
#include "defs.h"
|
2006-06-15 16:02:20 +00:00
|
|
|
|
2018-10-07 22:14:53 +00:00
|
|
|
// Fetch the uint64 at addr from the current process.
|
|
|
|
int
|
|
|
|
fetchaddr(uint64 addr, uint64 *ip)
|
|
|
|
{
|
2019-05-31 13:45:59 +00:00
|
|
|
struct proc *p = myproc();
|
|
|
|
if(addr >= p->sz || addr+sizeof(uint64) > p->sz)
|
2018-10-07 22:14:53 +00:00
|
|
|
return -1;
|
2019-06-01 09:33:38 +00:00
|
|
|
if(copyin(p->pagetable, (char *)ip, addr, sizeof(*ip)) != 0)
|
|
|
|
return -1;
|
2018-10-07 22:14:53 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2012-02-18 04:20:13 +00:00
|
|
|
// Fetch the nul-terminated string at addr from the current process.
|
2019-06-01 09:33:38 +00:00
|
|
|
// Returns length of string, not including nul, or -1 for error.
|
2006-07-16 15:38:00 +00:00
|
|
|
int
|
2019-06-01 09:33:38 +00:00
|
|
|
fetchstr(uint64 addr, char *buf, int max)
|
2006-07-16 15:38:00 +00:00
|
|
|
{
|
2019-05-31 13:45:59 +00:00
|
|
|
struct proc *p = myproc();
|
2019-06-01 09:33:38 +00:00
|
|
|
int err = copyinstr(p->pagetable, buf, addr, max);
|
|
|
|
if(err < 0)
|
|
|
|
return err;
|
|
|
|
return strlen(buf);
|
2006-06-26 15:11:19 +00:00
|
|
|
}
|
|
|
|
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
static uint64
|
2019-07-28 10:29:37 +00:00
|
|
|
argraw(int n)
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
{
|
2019-05-31 13:45:59 +00:00
|
|
|
struct proc *p = myproc();
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
switch (n) {
|
|
|
|
case 0:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a0;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
case 1:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a1;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
case 2:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a2;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
case 3:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a3;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
case 4:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a4;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
case 5:
|
2020-07-17 20:29:52 +00:00
|
|
|
return p->trapframe->a5;
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
}
|
2019-07-28 10:29:37 +00:00
|
|
|
panic("argraw");
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
2007-08-27 23:53:50 +00:00
|
|
|
// Fetch the nth 32-bit system call argument.
|
2006-06-26 15:11:19 +00:00
|
|
|
int
|
2007-08-27 23:53:17 +00:00
|
|
|
argint(int n, int *ip)
|
2006-06-26 15:11:19 +00:00
|
|
|
{
|
2019-07-28 10:29:37 +00:00
|
|
|
*ip = argraw(n);
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-07-28 10:29:37 +00:00
|
|
|
// Retrieve an argument as a pointer.
|
|
|
|
// Doesn't check for legality, since
|
|
|
|
// copyin/copyout will do that.
|
Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.
A summary of the changes is as follows:
- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files. And, we don't
care anymore about booting.
- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!
- Update gdb.tmpl to be for i386 or x86-64
- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
(32-bit)
- Update elfhdr to be 64 bit
- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt. The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)
- exec.c: fix passing argv (64-bit now instead of 32-bit).
- initcode.c: use syscall instead of int.
- kernel.ld: load kernel very high, in top terabyte. 64 bits is a lot of
address space!
- proc.c: initial return is through new syscall path instead of trapret.
- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.
- swtch: simplify for x86-64 calling conventions.
- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.
- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.
- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.
- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).
- types.h: add uint64, and change pde_t to uint64
- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit
- vectors: update to make them 64 bits
- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).
- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps. simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.
TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 12:24:42 +00:00
|
|
|
int
|
|
|
|
argaddr(int n, uint64 *ip)
|
|
|
|
{
|
2019-07-28 10:29:37 +00:00
|
|
|
*ip = argraw(n);
|
2006-09-07 14:13:26 +00:00
|
|
|
return 0;
|
2006-07-27 21:10:00 +00:00
|
|
|
}
|
|
|
|
|
2019-06-01 09:33:38 +00:00
|
|
|
// Fetch the nth word-sized system call argument as a null-terminated string.
|
|
|
|
// Copies into buf, at most max.
|
|
|
|
// Returns string length if OK (including nul), -1 if error.
|
2006-06-27 14:35:53 +00:00
|
|
|
int
|
2019-06-01 09:33:38 +00:00
|
|
|
argstr(int n, char *buf, int max)
|
2006-06-27 14:35:53 +00:00
|
|
|
{
|
2018-10-07 22:14:53 +00:00
|
|
|
uint64 addr;
|
|
|
|
if(argaddr(n, &addr) < 0)
|
2006-07-15 17:13:56 +00:00
|
|
|
return -1;
|
2019-06-01 09:33:38 +00:00
|
|
|
return fetchstr(addr, buf, max);
|
2006-06-27 14:35:53 +00:00
|
|
|
}
|
|
|
|
|
2019-07-01 21:01:50 +00:00
|
|
|
extern uint64 sys_chdir(void);
|
|
|
|
extern uint64 sys_close(void);
|
|
|
|
extern uint64 sys_dup(void);
|
|
|
|
extern uint64 sys_exec(void);
|
|
|
|
extern uint64 sys_exit(void);
|
|
|
|
extern uint64 sys_fork(void);
|
|
|
|
extern uint64 sys_fstat(void);
|
|
|
|
extern uint64 sys_getpid(void);
|
|
|
|
extern uint64 sys_kill(void);
|
|
|
|
extern uint64 sys_link(void);
|
|
|
|
extern uint64 sys_mkdir(void);
|
|
|
|
extern uint64 sys_mknod(void);
|
|
|
|
extern uint64 sys_open(void);
|
|
|
|
extern uint64 sys_pipe(void);
|
|
|
|
extern uint64 sys_read(void);
|
|
|
|
extern uint64 sys_sbrk(void);
|
|
|
|
extern uint64 sys_sleep(void);
|
|
|
|
extern uint64 sys_unlink(void);
|
|
|
|
extern uint64 sys_wait(void);
|
|
|
|
extern uint64 sys_write(void);
|
|
|
|
extern uint64 sys_uptime(void);
|
2006-07-27 21:10:00 +00:00
|
|
|
|
2019-07-01 21:01:50 +00:00
|
|
|
static uint64 (*syscalls[])(void) = {
|
2007-08-08 09:41:21 +00:00
|
|
|
[SYS_fork] sys_fork,
|
2011-07-28 00:35:46 +00:00
|
|
|
[SYS_exit] sys_exit,
|
|
|
|
[SYS_wait] sys_wait,
|
2019-05-31 16:43:20 +00:00
|
|
|
[SYS_pipe] sys_pipe,
|
|
|
|
[SYS_read] sys_read,
|
2019-06-04 15:31:50 +00:00
|
|
|
[SYS_kill] sys_kill,
|
2019-05-31 16:43:20 +00:00
|
|
|
[SYS_exec] sys_exec,
|
|
|
|
[SYS_fstat] sys_fstat,
|
|
|
|
[SYS_chdir] sys_chdir,
|
|
|
|
[SYS_dup] sys_dup,
|
2011-07-28 00:35:46 +00:00
|
|
|
[SYS_getpid] sys_getpid,
|
2019-06-03 21:59:17 +00:00
|
|
|
[SYS_sbrk] sys_sbrk,
|
2019-06-04 15:31:50 +00:00
|
|
|
[SYS_sleep] sys_sleep,
|
|
|
|
[SYS_uptime] sys_uptime,
|
2019-05-31 16:43:20 +00:00
|
|
|
[SYS_open] sys_open,
|
|
|
|
[SYS_write] sys_write,
|
|
|
|
[SYS_mknod] sys_mknod,
|
|
|
|
[SYS_unlink] sys_unlink,
|
|
|
|
[SYS_link] sys_link,
|
|
|
|
[SYS_mkdir] sys_mkdir,
|
|
|
|
[SYS_close] sys_close,
|
2007-08-08 09:41:21 +00:00
|
|
|
};
|
|
|
|
|
2019-07-10 13:24:50 +00:00
|
|
|
void
|
|
|
|
syscall(void)
|
2006-06-15 16:02:20 +00:00
|
|
|
{
|
2007-08-24 20:28:08 +00:00
|
|
|
int num;
|
2019-05-31 13:45:59 +00:00
|
|
|
struct proc *p = myproc();
|
2011-07-28 00:35:46 +00:00
|
|
|
|
2020-07-17 20:29:52 +00:00
|
|
|
num = p->trapframe->a7;
|
2012-08-23 00:28:58 +00:00
|
|
|
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
|
2020-07-17 20:29:52 +00:00
|
|
|
p->trapframe->a0 = syscalls[num]();
|
2011-07-28 00:35:46 +00:00
|
|
|
} else {
|
2019-05-31 13:45:59 +00:00
|
|
|
printf("%d %s: unknown sys call %d\n",
|
|
|
|
p->pid, p->name, num);
|
2020-07-17 20:29:52 +00:00
|
|
|
p->trapframe->a0 = -1;
|
2006-06-15 16:02:20 +00:00
|
|
|
}
|
|
|
|
}
|