add some comments
find out the hard way why user and kernel must have separate segment descriptors
This commit is contained in:
parent
c99599784e
commit
1afc9d3fca
2
asm.h
2
asm.h
|
@ -6,6 +6,8 @@
|
|||
.word 0, 0; \
|
||||
.byte 0, 0, 0, 0
|
||||
|
||||
// The 0xC0 means the limit is in 4096-byte units
|
||||
// and (for executable segments) 32-bit mode.
|
||||
#define SEG_ASM(type,base,lim) \
|
||||
.word (((lim) >> 12) & 0xffff), ((base) & 0xffff); \
|
||||
.byte (((base) >> 16) & 0xff), (0x90 | (type)), \
|
||||
|
|
|
@ -51,8 +51,10 @@ seta20.2:
|
|||
orl $CR0_PE, %eax
|
||||
movl %eax, %cr0
|
||||
|
||||
# Jump to next instruction, but in 32-bit code segment.
|
||||
# Switches processor into 32-bit mode.
|
||||
# This ljmp is how you load the CS (Code Segment) register.
|
||||
# SEG_ASM produces segment descriptors with the 32-bit mode
|
||||
# flag set (the D flag), so addresses and word operands will
|
||||
# default to 32 bits after this jump.
|
||||
ljmp $(SEG_KCODE<<3), $start32
|
||||
|
||||
.code32 # Assemble for 32-bit mode
|
||||
|
|
|
@ -45,8 +45,10 @@ start:
|
|||
orl $CR0_PE, %eax
|
||||
movl %eax, %cr0
|
||||
|
||||
# Jump to next instruction, but in 32-bit code segment.
|
||||
# Switches processor into 32-bit mode.
|
||||
# This ljmp is how you load the CS (Code Segment) register.
|
||||
# SEG_ASM produces segment descriptors with the 32-bit mode
|
||||
# flag set (the D flag), so addresses and word operands will
|
||||
# default to 32 bits after this jump.
|
||||
ljmp $(SEG_KCODE<<3), $start32
|
||||
|
||||
.code32 # Assemble for 32-bit mode
|
||||
|
|
22
main.c
22
main.c
|
@ -16,13 +16,13 @@ main(void)
|
|||
{
|
||||
mpinit(); // collect info about this machine
|
||||
lapicinit(mpbcpu());
|
||||
ksegment();
|
||||
ksegment(); // set up segments
|
||||
picinit(); // interrupt controller
|
||||
ioapicinit(); // another interrupt controller
|
||||
consoleinit(); // I/O devices & their interrupts
|
||||
uartinit(); // serial port
|
||||
pminit(); // physical memory for kernel
|
||||
jkstack(); // Jump to mainc on a properly-allocated stack
|
||||
pminit(); // discover how much memory there is
|
||||
jkstack(); // call mainc() on a properly-allocated stack
|
||||
}
|
||||
|
||||
void
|
||||
|
@ -41,7 +41,7 @@ void
|
|||
mainc(void)
|
||||
{
|
||||
cprintf("\ncpu%d: starting xv6\n\n", cpu->id);
|
||||
kvmalloc(); // allocate the kernel page table
|
||||
kvmalloc(); // initialze the kernel page table
|
||||
pinit(); // process table
|
||||
tvinit(); // trap vectors
|
||||
binit(); // buffer cache
|
||||
|
@ -57,8 +57,9 @@ mainc(void)
|
|||
mpmain();
|
||||
}
|
||||
|
||||
// Bootstrap processor gets here after setting up the hardware.
|
||||
// Additional processors start here.
|
||||
// Common CPU setup code.
|
||||
// Bootstrap CPU comes here from mainc().
|
||||
// Other CPUs jump here from bootother.S.
|
||||
static void
|
||||
mpmain(void)
|
||||
{
|
||||
|
@ -66,11 +67,11 @@ mpmain(void)
|
|||
ksegment();
|
||||
lapicinit(cpunum());
|
||||
}
|
||||
vminit(); // Run with paging on each processor
|
||||
vminit(); // turn on paging
|
||||
cprintf("cpu%d: starting\n", cpu->id);
|
||||
idtinit();
|
||||
idtinit(); // load idt register
|
||||
xchg(&cpu->booted, 1);
|
||||
scheduler();
|
||||
scheduler(); // start running processes
|
||||
}
|
||||
|
||||
static void
|
||||
|
@ -85,6 +86,7 @@ bootothers(void)
|
|||
// placed the start of bootother.S there.
|
||||
code = (uchar *) 0x7000;
|
||||
memmove(code, _binary_bootother_start, (uint)_binary_bootother_size);
|
||||
|
||||
for(c = cpus; c < cpus+ncpu; c++){
|
||||
if(c == cpus+cpunum()) // We've started already.
|
||||
continue;
|
||||
|
@ -95,7 +97,7 @@ bootothers(void)
|
|||
*(void**)(code-8) = mpmain;
|
||||
lapicstartap(c->id, (uint)code);
|
||||
|
||||
// Wait for cpu to get through bootstrap.
|
||||
// Wait for cpu to finish mpmain()
|
||||
while(c->booted == 0)
|
||||
;
|
||||
}
|
||||
|
|
4
proc.h
4
proc.h
|
@ -3,8 +3,8 @@
|
|||
#define SEG_KCODE 1 // kernel code
|
||||
#define SEG_KDATA 2 // kernel data+stack
|
||||
#define SEG_KCPU 3 // kernel per-cpu data
|
||||
#define SEG_UCODE 4
|
||||
#define SEG_UDATA 5
|
||||
#define SEG_UCODE 4 // user code
|
||||
#define SEG_UDATA 5 // user data+stack
|
||||
#define SEG_TSS 6 // this process's task state
|
||||
#define NSEGS 7
|
||||
|
||||
|
|
9
vm.c
9
vm.c
|
@ -93,12 +93,15 @@ ksegment(void)
|
|||
{
|
||||
struct cpu *c;
|
||||
|
||||
// Map once virtual addresses to linear addresses using identity map
|
||||
// Map virtual addresses to linear addresses using identity map.
|
||||
// Cannot share a CODE descriptor for both kernel and user
|
||||
// because it would have to have DPL_USR, but the CPU forbids
|
||||
// an interrupt from CPL=0 to DPL=3.
|
||||
c = &cpus[cpunum()];
|
||||
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
|
||||
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
||||
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0x0, 0xffffffff, DPL_USER);
|
||||
c->gdt[SEG_UDATA] = SEG(STA_W, 0x0, 0xffffffff, DPL_USER);
|
||||
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
|
||||
c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
|
||||
|
||||
// map cpu, and curproc
|
||||
c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
|
||||
|
|
Loading…
Reference in a new issue