fork/wait/exit work

This commit is contained in:
Robert Morris 2019-05-31 09:45:59 -04:00
parent 0f90388c89
commit 2ec1959fd1
30 changed files with 1098 additions and 1863 deletions

3
.gdbinit.tmpl-riscv Normal file
View file

@ -0,0 +1,3 @@
set architecture riscv
target remote 127.0.0.1:1234
symbol-file kernel

101
Makefile
View file

@ -1,4 +1,20 @@
OBJS = \ OBJS = \
start.o \
console.o \
uart.o \
kalloc.o \
spinlock.o \
string.o \
main.o \
vm.o \
proc.o \
swtch.o \
trampoline.o \
trap.o \
syscall.o \
sysproc.o
XXXOBJS = \
bio.o\ bio.o\
console.o\ console.o\
exec.o\ exec.o\
@ -28,48 +44,23 @@ OBJS = \
vectors.o\ vectors.o\
vm.o\ vm.o\
# Cross-compiling (e.g., on Mac OS X) # riscv64-unknown-elf- or riscv64-linux-gnu-
# TOOLPREFIX = i386-jos-elf # perhaps in /opt/riscv/bin
# Using native tools (e.g., on X86 Linux)
#TOOLPREFIX = #TOOLPREFIX =
# Try to infer the correct TOOLPREFIX if not set # Try to infer the correct TOOLPREFIX if not set
ifndef TOOLPREFIX ifndef TOOLPREFIX
TOOLPREFIX := $(shell if i386-jos-elf-objdump -i 2>&1 | grep '^elf32-i386$$' >/dev/null 2>&1; \ TOOLPREFIX := $(shell if riscv64-unknown-elf-objdump -i 2>&1 | grep 'elf64-big' >/dev/null 2>&1; \
then echo 'i386-jos-elf-'; \ then echo 'riscv64-unknown-elf-'; \
elif objdump -i 2>&1 | grep 'elf32-i386' >/dev/null 2>&1; \ elif riscv64-linux-gnu-objdump -i 2>&1 | grep 'elf64-big' >/dev/null 2>&1; \
then echo ''; \ then echo 'riscv64-linux-gnu-'; \
else echo "***" 1>&2; \ else echo "***" 1>&2; \
echo "*** Error: Couldn't find an i386-*-elf version of GCC/binutils." 1>&2; \ echo "*** Error: Couldn't find an riscv64 version of GCC/binutils." 1>&2; \
echo "*** Is the directory with i386-jos-elf-gcc in your PATH?" 1>&2; \
echo "*** If your i386-*-elf toolchain is installed with a command" 1>&2; \
echo "*** prefix other than 'i386-jos-elf-', set your TOOLPREFIX" 1>&2; \
echo "*** environment variable to that prefix and run 'make' again." 1>&2; \
echo "*** To turn off this error, run 'gmake TOOLPREFIX= ...'." 1>&2; \ echo "*** To turn off this error, run 'gmake TOOLPREFIX= ...'." 1>&2; \
echo "***" 1>&2; exit 1; fi) echo "***" 1>&2; exit 1; fi)
endif endif
# If the makefile can't find QEMU, specify its path here QEMU = qemu-system-riscv64
QEMU = qemu-system-x86_64
# Try to infer the correct QEMU
ifndef QEMU
QEMU = $(shell if which qemu > /dev/null; \
then echo qemu; exit; \
elif which qemu-system-i386 > /dev/null; \
then echo qemu-system-i386; exit; \
elif which qemu-system-x86_64 > /dev/null; \
then echo qemu-system-x86_64; exit; \
else \
qemu=/Applications/Q.app/Contents/MacOS/i386-softmmu.app/Contents/MacOS/i386-softmmu; \
if test -x $$qemu; then echo $$qemu; exit; fi; fi; \
echo "***" 1>&2; \
echo "*** Error: Couldn't find a working QEMU executable." 1>&2; \
echo "*** Is the directory containing the qemu binary in your PATH" 1>&2; \
echo "*** or have you tried setting the QEMU variable in Makefile?" 1>&2; \
echo "***" 1>&2; exit 1)
endif
CC = $(TOOLPREFIX)gcc CC = $(TOOLPREFIX)gcc
AS = $(TOOLPREFIX)gas AS = $(TOOLPREFIX)gas
@ -77,15 +68,10 @@ LD = $(TOOLPREFIX)ld
OBJCOPY = $(TOOLPREFIX)objcopy OBJCOPY = $(TOOLPREFIX)objcopy
OBJDUMP = $(TOOLPREFIX)objdump OBJDUMP = $(TOOLPREFIX)objdump
XFLAGS = -m64 -mcmodel=large -ggdb CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -MD -ggdb -Werror -fno-omit-frame-pointer -O
# CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -O2 -Wall -MD -ggdb -Werror -fno-omit-frame-pointer CFLAGS = -mcmodel=medany
CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -MD -ggdb -Werror -fno-omit-frame-pointer CFLAGS += -ffreestanding -fno-common -nostdlib -mno-relax
CFLAGS += -ffreestanding -fno-common -nostdlib $(XFLAGS)
CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector) CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector)
ASFLAGS = -gdwarf-2 -Wa,-divide $(XFLAGS)
# FreeBSD ld wants ``elf_i386_fbsd''
LDFLAGS += -m $(shell $(LD) -V | grep elf_x86_64 2>/dev/null | head -n 1)
LDFLAGS += -z max-page-size=4096
# Disable PIE when possible (for Ubuntu 16.10 toolchain) # Disable PIE when possible (for Ubuntu 16.10 toolchain)
ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]no-pie'),) ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]no-pie'),)
@ -95,21 +81,17 @@ ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]nopie'),)
CFLAGS += -fno-pie -nopie CFLAGS += -fno-pie -nopie
endif endif
kernel: $(OBJS) entry.o entryother initcode kernel.ld LDFLAGS = -z max-page-size=4096
$(LD) $(LDFLAGS) -T kernel.ld -o kernel entry.o $(OBJS) -b binary initcode entryother
kernel: $(OBJS) entry.o kernel.ld
$(LD) $(LDFLAGS) -T kernel.ld -o kernel entry.o $(OBJS)
$(OBJDUMP) -S kernel > kernel.asm $(OBJDUMP) -S kernel > kernel.asm
$(OBJDUMP) -t kernel | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernel.sym $(OBJDUMP) -t kernel | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernel.sym
entryother: entryother.S
$(CC) $(CFLAGS) -fno-pic -nostdinc -I. -c entryother.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0x7000 -o bootblockother.o entryother.o
$(OBJCOPY) -S -O binary -j .text bootblockother.o entryother
$(OBJDUMP) -S bootblockother.o > entryother.asm
initcode: initcode.S initcode: initcode.S
$(CC) $(CFLAGS) -nostdinc -I. -c initcode.S $(CC) $(CFLAGS) -nostdinc -I. -c initcode.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0 -o initcode.out initcode.o #$(LD) $(LDFLAGS) -N -e start -Ttext 0 -o initcode.out initcode.o
$(OBJCOPY) -S -O binary initcode.out initcode #$(OBJCOPY) -S -O binary initcode.out initcode
$(OBJDUMP) -S initcode.o > initcode.asm $(OBJDUMP) -S initcode.o > initcode.asm
tags: $(OBJS) entryother.S _init tags: $(OBJS) entryother.S _init
@ -186,19 +168,18 @@ QEMUGDB = $(shell if $(QEMU) -help | grep -q '^-gdb'; \
then echo "-gdb tcp::$(GDBPORT)"; \ then echo "-gdb tcp::$(GDBPORT)"; \
else echo "-s -p $(GDBPORT)"; fi) else echo "-s -p $(GDBPORT)"; fi)
ifndef CPUS ifndef CPUS
CPUS := 2 CPUS := 1
endif endif
QEMUOPTS = -kernel kernel -drive file=fs.img,index=1,media=disk,format=raw -smp $(CPUS) -m 512 $(QEMUEXTRA) QEMUOPTS = -machine virt -kernel kernel -m 3G -smp $(CPUS) -nographic
qemu: fs.img #QEMUOPTS += -initrd fs.img
$(QEMU) -serial mon:stdio $(QEMUOPTS)
qemu-nox: fs.img kernel qemu: kernel
$(QEMU) -nographic $(QEMUOPTS) $(QEMU) $(QEMUOPTS)
.gdbinit: .gdbinit.tmpl-x64 .gdbinit: .gdbinit.tmpl-riscv
sed "s/localhost:1234/localhost:$(GDBPORT)/" < $^ > $@ sed "s/:1234/:$(GDBPORT)/" < $^ > $@
qemu-gdb: fs.img kernel .gdbinit qemu-gdb: kernel .gdbinit
@echo "*** Now run 'gdb'." 1>&2 @echo "*** Now run 'gdb'." 1>&2
$(QEMU) $(QEMUOPTS) -S $(QEMUGDB) $(QEMU) $(QEMUOPTS) -S $(QEMUGDB)

189
console.c
View file

@ -5,17 +5,14 @@
#include <stdarg.h> #include <stdarg.h>
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "traps.h"
#include "spinlock.h" #include "spinlock.h"
#include "sleeplock.h" #include "sleeplock.h"
#include "fs.h" #include "fs.h"
#include "file.h" #include "file.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h" #include "riscv.h"
#include "proc.h" #include "defs.h"
#include "x86.h"
static void consputc(int); static void consputc(int);
@ -28,6 +25,12 @@ static struct {
static char digits[] = "0123456789abcdef"; static char digits[] = "0123456789abcdef";
void
consoleinit(void)
{
initlock(&cons.lock, "console");
}
static void static void
printint(int xx, int base, int sign) printint(int xx, int base, int sign)
{ {
@ -66,7 +69,7 @@ printptr(uint64 x) {
// Print to the console. only understands %d, %x, %p, %s. // Print to the console. only understands %d, %x, %p, %s.
void void
cprintf(char *fmt, ...) printf(char *fmt, ...)
{ {
va_list ap; va_list ap;
int i, c, locking; int i, c, locking;
@ -122,67 +125,20 @@ cprintf(char *fmt, ...)
void void
panic(char *s) panic(char *s)
{ {
int i; printf("panic: ");
uint64 pcs[10]; printf(s);
printf("\n");
cli();
cons.locking = 0;
// use lapiccpunum so that we can call panic from mycpu()
cprintf("lapicid %d: panic: ", lapicid());
cprintf(s);
cprintf("\n");
getcallerpcs(&s, pcs);
for(i=0; i<10; i++)
cprintf(" %p", pcs[i]);
panicked = 1; // freeze other CPU panicked = 1; // freeze other CPU
for(;;) for(;;)
; ;
} }
//PAGEBREAK: 50
#define BACKSPACE 0x100 #define BACKSPACE 0x100
#define CRTPORT 0x3d4
static ushort *crt = (ushort*)P2V(0xb8000); // CGA memory
static void
cgaputc(int c)
{
int pos;
// Cursor position: col + 80*row.
outb(CRTPORT, 14);
pos = inb(CRTPORT+1) << 8;
outb(CRTPORT, 15);
pos |= inb(CRTPORT+1);
if(c == '\n')
pos += 80 - pos%80;
else if(c == BACKSPACE){
if(pos > 0) --pos;
} else
crt[pos++] = (c&0xff) | 0x0700; // black on white
if(pos < 0 || pos > 25*80)
panic("pos under/overflow");
if((pos/80) >= 24){ // Scroll up.
memmove(crt, crt+80, sizeof(crt[0])*23*80);
pos -= 80;
memset(crt+pos, 0, sizeof(crt[0])*(24*80 - pos));
}
outb(CRTPORT, 14);
outb(CRTPORT+1, pos>>8);
outb(CRTPORT, 15);
outb(CRTPORT+1, pos);
crt[pos] = ' ' | 0x0700;
}
void void
consputc(int c) consputc(int c)
{ {
if(panicked){ if(panicked){
cli();
for(;;) for(;;)
; ;
} }
@ -191,125 +147,4 @@ consputc(int c)
uartputc('\b'); uartputc(' '); uartputc('\b'); uartputc('\b'); uartputc(' '); uartputc('\b');
} else } else
uartputc(c); uartputc(c);
cgaputc(c);
} }
#define INPUT_BUF 128
struct {
char buf[INPUT_BUF];
uint r; // Read index
uint w; // Write index
uint e; // Edit index
} input;
#define C(x) ((x)-'@') // Control-x
void
consoleintr(int (*getc)(void))
{
int c, doprocdump = 0;
acquire(&cons.lock);
while((c = getc()) >= 0){
switch(c){
case C('P'): // Process listing.
// procdump() locks cons.lock indirectly; invoke later
doprocdump = 1;
break;
case C('U'): // Kill line.
while(input.e != input.w &&
input.buf[(input.e-1) % INPUT_BUF] != '\n'){
input.e--;
consputc(BACKSPACE);
}
break;
case C('H'): case '\x7f': // Backspace
if(input.e != input.w){
input.e--;
consputc(BACKSPACE);
}
break;
default:
if(c != 0 && input.e-input.r < INPUT_BUF){
c = (c == '\r') ? '\n' : c;
input.buf[input.e++ % INPUT_BUF] = c;
consputc(c);
if(c == '\n' || c == C('D') || input.e == input.r+INPUT_BUF){
input.w = input.e;
wakeup(&input.r);
}
}
break;
}
}
release(&cons.lock);
if(doprocdump) {
procdump(); // now call procdump() wo. cons.lock held
}
}
int
consoleread(struct inode *ip, char *dst, int n)
{
uint target;
int c;
iunlock(ip);
target = n;
acquire(&cons.lock);
while(n > 0){
while(input.r == input.w){
if(myproc()->killed){
release(&cons.lock);
ilock(ip);
return -1;
}
sleep(&input.r, &cons.lock);
}
c = input.buf[input.r++ % INPUT_BUF];
if(c == C('D')){ // EOF
if(n < target){
// Save ^D for next time, to make sure
// caller gets a 0-byte result.
input.r--;
}
break;
}
*dst++ = c;
--n;
if(c == '\n')
break;
}
release(&cons.lock);
ilock(ip);
return target - n;
}
int
consolewrite(struct inode *ip, char *buf, int n)
{
int i;
iunlock(ip);
acquire(&cons.lock);
for(i = 0; i < n; i++)
consputc(buf[i] & 0xff);
release(&cons.lock);
ilock(ip);
return n;
}
void
consoleinit(void)
{
initlock(&cons.lock, "console");
devsw[CONSOLE].write = consolewrite;
devsw[CONSOLE].read = consoleread;
cons.locking = 1;
ioapicenable(IRQ_KBD, 0);
}

42
defs.h
View file

@ -19,7 +19,7 @@ void bwrite(struct buf*);
// console.c // console.c
void consoleinit(void); void consoleinit(void);
void cprintf(char*, ...); void printf(char*, ...);
void consoleintr(int(*)(void)); void consoleintr(int(*)(void));
void panic(char*) __attribute__((noreturn)); void panic(char*) __attribute__((noreturn));
@ -65,10 +65,9 @@ extern uchar ioapicid;
void ioapicinit(void); void ioapicinit(void);
// kalloc.c // kalloc.c
char* kalloc(void); void* kalloc(void);
void kfree(char*); void kfree(void *);
void kinit1(void*, void*); void kinit();
void kinit2(void*, void*);
// kbd.c // kbd.c
void kbdintr(void); void kbdintr(void);
@ -112,7 +111,7 @@ int kill(int);
struct cpu* mycpu(void); struct cpu* mycpu(void);
struct cpu* getmycpu(void); struct cpu* getmycpu(void);
struct proc* myproc(); struct proc* myproc();
void pinit(void); void procinit(void);
void procdump(void); void procdump(void);
void scheduler(void) __attribute__((noreturn)); void scheduler(void) __attribute__((noreturn));
void sched(void); void sched(void);
@ -124,7 +123,7 @@ void wakeup(void*);
void yield(void); void yield(void);
// swtch.S // swtch.S
void swtch(struct context**, struct context*); void swtch(struct context*, struct context*);
// spinlock.c // spinlock.c
void acquire(struct spinlock*); void acquire(struct spinlock*);
@ -158,16 +157,16 @@ int argaddr(int, uint64 *);
int fetchint(uint64, int*); int fetchint(uint64, int*);
int fetchstr(uint64, char**); int fetchstr(uint64, char**);
int fetchaddr(uint64, uint64*); int fetchaddr(uint64, uint64*);
void syscall(struct sysframe*); void syscall();
// timer.c // timer.c
void timerinit(void); void timerinit(void);
// trap.c // trap.c
void idtinit(void);
extern uint ticks; extern uint ticks;
void tvinit(void); void trapinit(void);
extern struct spinlock tickslock; extern struct spinlock tickslock;
void usertrapret(void);
// uart.c // uart.c
void uartinit(void); void uartinit(void);
@ -175,20 +174,15 @@ void uartintr(void);
void uartputc(int); void uartputc(int);
// vm.c // vm.c
void seginit(void); void kvminit(void);
void kvmalloc(void); void kvmswitch(void);
pde_t* setupkvm(void); pagetable_t uvmcreate(void);
char* uva2ka(pde_t*, char*); void uvminit(pagetable_t, char *, uint);
int allocuvm(pde_t*, uint, uint); int uvmdealloc(pagetable_t, uint64, uint64);
int deallocuvm(pde_t*, uint64, uint64); void uvmcopy(pagetable_t, pagetable_t, uint64);
void freevm(pde_t*, uint64); void uvmfree(pagetable_t, uint64);
void inituvm(pde_t*, char*, uint); void mappages(pagetable_t, uint64, uint64, uint64, int);
int loaduvm(pde_t*, char*, struct inode*, uint, uint); void unmappages(pagetable_t, uint64, uint64, int);
pde_t* copyuvm(pde_t*, uint);
void switchuvm(struct proc*);
void switchkvm(void);
int copyout(pde_t*, uint, void*, uint);
void clearpteu(pde_t *pgdir, char *uva);
// number of elements in fixed-size array // number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0])) #define NELEM(x) (sizeof(x)/sizeof((x)[0]))

245
entry.S
View file

@ -1,223 +1,22 @@
# x86-64 bootstrap, assuming load by MultiBoot-compliant loader. # qemu -kernel starts at 0x1000. the instructions
# The MutliBoot specification is at: # there seem to be provided by qemu, as if it
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html # were a ROM. the code at 0x1000 jumps to
# GRUB is a MultiBoot loader, as is qemu's -kernel option. # 0x8000000, the _start function here,
# in machine mode.
#include "mmu.h" .section .data
#include "memlayout.h" .globl stack0
.section .text
# STACK is the size of the bootstrap stack. .globl mstart
#define STACK 8192 .section .text
.globl _entry
# MultiBoot header. _entry:
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Header-layout # set up a stack for C; stack0 is declared in start.
.align 4 la sp, stack0
.text addi sp, sp, 1024
.globl multiboot_header addi sp, sp, 1024
multiboot_header: addi sp, sp, 1024
#define magic 0x1badb002 addi sp, sp, 1024
#define flags (1<<16 | 1<<0) # jump to mstart() in start.c
.long magic call mstart
.long flags junk:
.long (- magic - flags) # checksum j junk
.long V2P_WO(multiboot_header) # header address
.long V2P_WO(multiboot_header) # load address
.long V2P_WO(edata) # load end address
.long V2P_WO(end) # bss end address
.long V2P_WO(start) # entry address
# Entry point jumped to by boot loader. Running in 32-bit mode.
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Machine-state
#
# EAX = 0x2badb002
# EBX = address of multiboot information structure
# CS = 32-bit read/execute code segment with identity map
# DS, ES, FS, GS, SS = 32-bit read/write data segment with identity map
# A20 gate = enabled
# CR0 = PE set, PG clear
# EFLAGS = VM clear, IF clear
#
.code32
.globl start
start:
# Tell BIOS to do "warm reboot" when we shut down.
movw $0x1234, 0x472
# Set up multiboot arguments for main.
movl %eax, %edi
movl %ebx, %esi
# Initialize stack.
movl $V2P_WO(stack+STACK), %esp
# Zero bss. QEMU's MultiBoot seems not to.
# It's possible that the header above is not right, but it looks right.
# %edi is holding multiboot argument, so save in another register.
# (The stack is in the bss.)
movl %edi, %edx
movl $V2P_WO(edata), %edi
movl $V2P_WO(end), %ecx
subl $V2P_WO(edata), %ecx
movl $0, %eax
cld
rep stosb
movl %edx, %edi
call loadgdt
# Enter new 32-bit code segment (already in 32-bit mode).
ljmp $SEG_KCODE32, $V2P_WO(start32) // code32 segment selector
start32:
# Initialize page table.
call initpagetables
call init32e
movl $V2P_WO(start64), %eax
# Enter 64-bit mode.
ljmp $SEG_KCODE, $V2P_WO(tramp64) // code64 segment selector
.code64
start64:
# Load VA of stack
movabsq $(stack+STACK), %rsp
# Clear frame pointer for stack walks
movl $0, %ebp
# Call into C code.
call main
# should not return from main
jmp .
.code32
.global apstart
apstart:
call loadgdt
ljmp $SEG_KCODE32, $V2P_WO(apstart32) // code32 segment selector
apstart32:
call init32e
movl $V2P_WO(apstart64), %eax
ljmp $SEG_KCODE, $V2P_WO(tramp64) // code64 segment selector
.code64
apstart64:
# Remember (from bootothers), that our kernel stack pointer is
# at the top of our temporary stack.
popq %rax
movq %rax, %rsp
movq $0, %rbp
call apmain
jmp .
.code64
tramp64:
# The linker thinks we are running at tramp64, but we're actually
# running at PADDR(tramp64), so use an explicit calculation to
# load and jump to the correct address. %rax should hold the
# physical address of the jmp target.
movq $KERNBASE, %r11
addq %r11, %rax
jmp *%rax
# Initial stack
.comm stack, STACK
# Page tables. See section 4.5 of 253668.pdf.
# We map the first GB of physical memory at 0 and at 1 TB (not GB) before
# the end of virtual memory. At boot time we are using the mapping at 0
# but during ordinary execution we use the high mapping.
# The intent is that after bootstrap the kernel can expand this mapping
# to cover all the available physical memory.
# This would be easier if we could use the PS bit to create GB-sized entries
# and skip the pdt table, but not all chips support it, and QEMU doesn't.
.align 4096
pml4:
.quad V2P_WO(pdpt) + PTE_P + PTE_W // present, read/write
.quad 0
.space 4096 - 2*16
.quad V2P_WO(pdpt) + PTE_P + PTE_W
.quad 0
.align 4096
pdpt:
.quad V2P_WO(pdt) + PTE_P + PTE_W
.space 4096 - 8
.align 4096
pdt:
// Filled in below.
.space 4096
.code32
initpagetables:
pushl %edi
pushl %ecx
pushl %eax
// Set up 64-bit entry in %edx:%eax.
// Base address 0, present, read/write, large page.
movl $(0 | PTE_P | PTE_W | PTE_PS), %eax
movl $0, %edx
// Fill in 512 entries at pdt.
movl $V2P_WO(pdt), %edi
movl $512, %ecx
1:
// Write this 64-bit entry.
movl %eax, 0(%edi)
movl %edx, 4(%edi)
addl $8, %edi
// 64-bit add to prepare address for next entry.
// Because this is a large page entry, it covers 512 4k pages (2 MB).
add $(512*4096), %eax
adc $0, %edx
loop 1b
popl %eax
popl %ecx
popl %edi
ret
# Initialize IA-32e mode. See section 9.8.5 of 253668.pdf.
init32e:
# Set CR4.PAE and CR4.PSE = 1.
movl %cr4, %eax
orl $0x30, %eax
movl %eax, %cr4
# Load CR3 with physical base address of level 4 page table.
movl $V2P_WO(pml4), %eax
movl %eax, %cr3
# Enable IA-32e mode by setting IA32_EFER.LME = 1.
# Also turn on IA32_EFER.SCE (syscall enable).
movl $0xc0000080, %ecx
rdmsr
orl $0x101, %eax
wrmsr
# Enable paging by setting CR0.PG = 1.
movl %cr0, %eax
orl $0x80000000, %eax
movl %eax, %cr0
nop
nop
ret
loadgdt:
subl $8, %esp
movl $V2P_WO(bootgdt), 4(%esp)
movw $(8*NSEGS-1), 2(%esp)
lgdt 2(%esp)
addl $8, %esp
movl $SEG_KDATA, %eax // data segment selector
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
movl $0, %eax // null segment selector
movw %ax, %fs
movw %ax, %gs
ret

22
exec.c
View file

@ -19,8 +19,8 @@ exec(char *path, char **argv)
struct inode *ip; struct inode *ip;
struct proghdr ph; struct proghdr ph;
pde_t *pgdir, *oldpgdir; pde_t *pgdir, *oldpgdir;
struct proc *curproc = myproc(); struct proc *p = myproc();
uint64 oldsz = curproc->sz; uint64 oldsz = p->sz;
begin_op(); begin_op();
@ -85,8 +85,8 @@ exec(char *path, char **argv)
ustack[1] = argc; ustack[1] = argc;
ustack[2] = sp - (argc+1)*sizeof(uint64); // argv pointer ustack[2] = sp - (argc+1)*sizeof(uint64); // argv pointer
curproc->sf->rdi = argc; p->sf->rdi = argc;
curproc->sf->rsi = sp - (argc+1)*sizeof(uint64); p->sf->rsi = sp - (argc+1)*sizeof(uint64);
sp -= (3+argc+1) * sizeof(uint64); sp -= (3+argc+1) * sizeof(uint64);
if(copyout(pgdir, sp, ustack, (3+argc+1)*sizeof(uint64)) < 0) if(copyout(pgdir, sp, ustack, (3+argc+1)*sizeof(uint64)) < 0)
@ -96,15 +96,15 @@ exec(char *path, char **argv)
for(last=s=path; *s; s++) for(last=s=path; *s; s++)
if(*s == '/') if(*s == '/')
last = s+1; last = s+1;
safestrcpy(curproc->name, last, sizeof(curproc->name)); safestrcpy(p->name, last, sizeof(p->name));
// Commit to the user image. // Commit to the user image.
oldpgdir = curproc->pgdir; oldpgdir = p->pgdir;
curproc->pgdir = pgdir; p->pgdir = pgdir;
curproc->sz = sz; p->sz = sz;
curproc->sf->rcx = elf.entry; // main p->sf->rcx = elf.entry; // main
curproc->sf->rsp = sp; p->sf->rsp = sp;
switchuvm(curproc); switchuvm(p);
freevm(oldpgdir, oldsz); freevm(oldpgdir, oldsz);
return 0; return 0;

View file

@ -2,22 +2,20 @@
# This code runs in user space. # This code runs in user space.
#include "syscall.h" #include "syscall.h"
#include "traps.h"
# exec(init, argv) # exec(init, argv)
.globl start .globl start
start: start:
mov $init, %rdi la a0, init
mov $argv, %rsi la a1, argv
mov $SYS_exec, %rax li a7, SYS_exec
syscall ecall
# for(;;) exit(); # for(;;) exit();
exit: exit:
mov $SYS_exit, %rax li a7, SYS_exit
syscall ecall
jmp exit jal exit
# char init[] = "/init\0"; # char init[] = "/init\0";
init: init:
@ -28,4 +26,3 @@ init:
argv: argv:
.long init .long init
.long 0 .long 0

View file

@ -3,13 +3,14 @@
// and pipe buffers. Allocates 4096-byte pages. // and pipe buffers. Allocates 4096-byte pages.
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h"
#include "spinlock.h" #include "spinlock.h"
#include "riscv.h"
#include "defs.h"
void freerange(void *pa_start, void *pa_end);
void freerange(void *vstart, void *vend);
extern char end[]; // first address after kernel loaded from ELF file extern char end[]; // first address after kernel loaded from ELF file
// defined by the kernel linker script in kernel.ld // defined by the kernel linker script in kernel.ld
@ -19,36 +20,22 @@ struct run {
struct { struct {
struct spinlock lock; struct spinlock lock;
int use_lock;
struct run *freelist; struct run *freelist;
} kmem; } kmem;
// Initialization happens in two phases.
// 1. main() calls kinit1() while still using entrypgdir to place just
// the pages mapped by entrypgdir on free list.
// 2. main() calls kinit2() with the rest of the physical pages
// after installing a full page table that maps them on all cores.
void void
kinit1(void *vstart, void *vend) kinit()
{ {
initlock(&kmem.lock, "kmem"); initlock(&kmem.lock, "kmem");
kmem.use_lock = 0; freerange(end, (void*)PHYSTOP);
freerange(vstart, vend);
} }
void void
kinit2(void *vstart, void *vend) freerange(void *pa_start, void *pa_end)
{
freerange(vstart, vend);
kmem.use_lock = 1;
}
void
freerange(void *vstart, void *vend)
{ {
char *p; char *p;
p = (char*)PGROUNDUP((uint64)vstart); p = (char*)PGROUNDUP((uint64)pa_start);
for(; p + PGSIZE <= (char*)vend; p += PGSIZE) for(; p + PGSIZE <= (char*)pa_end; p += PGSIZE)
kfree(p); kfree(p);
} }
//PAGEBREAK: 21 //PAGEBREAK: 21
@ -57,42 +44,37 @@ freerange(void *vstart, void *vend)
// call to kalloc(). (The exception is when // call to kalloc(). (The exception is when
// initializing the allocator; see kinit above.) // initializing the allocator; see kinit above.)
void void
kfree(char *v) kfree(void *pa)
{ {
struct run *r; struct run *r;
if((uint64)v % PGSIZE || v < end || V2P(v) >= PHYSTOP) if(((uint64)pa % PGSIZE) != 0 || (char*)pa < end || (uint64)pa >= PHYSTOP)
panic("kfree"); panic("kfree");
// Fill with junk to catch dangling refs. // Fill with junk to catch dangling refs.
memset(v, 1, PGSIZE); memset(pa, 1, PGSIZE);
if(kmem.use_lock)
acquire(&kmem.lock); acquire(&kmem.lock);
r = (struct run*)v; r = (struct run*)pa;
r->next = kmem.freelist; r->next = kmem.freelist;
kmem.freelist = r; kmem.freelist = r;
if(kmem.use_lock)
release(&kmem.lock); release(&kmem.lock);
} }
// Allocate one 4096-byte page of physical memory. // Allocate one 4096-byte page of physical memory.
// Returns a pointer that the kernel can use. // Returns a pointer that the kernel can use.
// Returns 0 if the memory cannot be allocated. // Returns 0 if the memory cannot be allocated.
char* void *
kalloc(void) kalloc(void)
{ {
struct run *r; struct run *r;
if(kmem.use_lock)
acquire(&kmem.lock); acquire(&kmem.lock);
r = kmem.freelist; r = kmem.freelist;
if(r) if(r)
kmem.freelist = r->next; kmem.freelist = r->next;
if(kmem.use_lock)
release(&kmem.lock); release(&kmem.lock);
if(r != 0 && (uint64) r < KERNBASE) memset((char*)r, 5, PGSIZE); // fill with junk
panic("kalloc"); return (void*)r;
return (char*)r;
} }

View file

@ -1,50 +1,33 @@
OUTPUT_FORMAT("elf64-x86-64", "elf64-x86-64", "elf64-x86-64") OUTPUT_ARCH( "riscv" )
OUTPUT_ARCH(i386:x86-64) ENTRY( _entry )
SECTIONS SECTIONS
{ {
. = 0xFFFFFF0000100000; /*
PROVIDE(text = .); * ensure that entry.S / _entry is at 0x80000000,
.text : AT(0x100000) { * where qemu's -kernel jumps.
*(.text .stub .text.* .gnu.linkonce.t.*) */
} . = 0x80000000;
.rodata : { .text :
*(.rodata .rodata.* .gnu.linkonce.r.*) {
} *(.text)
. = ALIGN(0x1000);
/* Include debugging information in kernel memory */ *(trampoline)
.stab : {
PROVIDE(__STAB_BEGIN__ = .);
*(.stab);
PROVIDE(__STAB_END__ = .);
BYTE(0) /* Force the linker to allocate space
for this section */
}
.stabstr : {
PROVIDE(__STABSTR_BEGIN__ = .);
*(.stabstr);
PROVIDE(__STABSTR_END__ = .);
BYTE(0) /* Force the linker to allocate space
for this section */
} }
. = ALIGN(0x1000); . = ALIGN(0x1000);
PROVIDE(etext = .);
/* Conventionally, Unix linkers provide pseudo-symbols /*
* etext, edata, and end, at the end of the text, data, and bss. * make sure end is after data and bss.
* For the kernel mapping, we need the address at the beginning */
* of the data section, but that's not one of the conventional
* symbols, because the convention started before there was a
* read-only rodata section between text and data. */
PROVIDE(data = .);
.data : { .data : {
*(.data) *(.data)
} }
bss : { bss : {
PROVIDE(edata = .);
*(.bss) *(.bss)
*(COMMON)
PROVIDE(end = .);
} }
. = ALIGN(0x1000);
PROVIDE(end = .);
} }

105
main.c
View file

@ -1,105 +1,28 @@
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h" #include "riscv.h"
#include "proc.h" #include "defs.h"
#include "x86.h"
extern pde_t *kpgdir;
extern char end[]; // first address after kernel loaded from ELF file
static void mpmain(void) __attribute__((noreturn));
static void startothers(void);
// Bootstrap processor starts running C code here. // Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first // Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work. // doing some setup required for memory allocator to work.
int void
main(uint64 mbmagic, uint64 mbaddr) main()
{ {
if(mbmagic != 0x2badb002)
panic("multiboot header not found");
kinit1(end, P2V(4*1024*1024)); // phys page allocator
kvmalloc(); // kernel page table
mpinit(); // detect other processors
lapicinit(); // interrupt controller
seginit(); // segment descriptors
picinit(); // disable pic
ioapicinit(); // another interrupt controller
consoleinit(); // console hardware
uartinit(); // serial port uartinit(); // serial port
pinit(); // process table consoleinit();
tvinit(); // trap vectors printf("entering main()\n");
kinit(); // physical page allocator
kvminit(); // kernel page table
procinit(); // process table
trapinit(); // trap vectors
#if 0
binit(); // buffer cache binit(); // buffer cache
fileinit(); // file table fileinit(); // file table
ideinit(); // disk ideinit(); // disk
#endif
startothers(); // start other processors
kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
userinit(); // first user process userinit(); // first user process
mpmain();
return 0; scheduler();
} }
extern struct cpu* getmycpu();
// Common CPU setup code.
static void
mpmain(void)
{
cprintf("cpu%d: starting %d\n", cpuid(), cpuid());
idtinit(); // load idt register
xchg(&(mycpu()->started), 1); // tell startothers() we're up
scheduler(); // start running processes
}
// AP processors jump here from entryother.S.
void
apmain(void)
{
switchkvm();
seginit();
lapicinit();
mpmain();
}
void apstart(void);
// Start the non-boot (AP) processors.
static void
startothers(void)
{
extern uchar _binary_entryother_start[], _binary_entryother_size[];
uchar *code;
struct cpu *c;
char *stack;
// Write entry code to unused memory at 0x7000.
// The linker has placed the image of entryother.S in
// _binary_entryother_start.
code = P2V(0x7000);
memmove(code, _binary_entryother_start, (uint64)_binary_entryother_size);
for(c = cpus; c < cpus+ncpu; c++){
if(c == mycpu()) // We've started already.
continue;
// Tell entryother.S what stack to use, where to enter, and what
// pgdir to use. We cannot use kpgdir yet, because the AP processor
// is running in low memory, so we use entrypgdir for the APs too.
stack = kalloc();
*(uint32*)(code-4) = V2P(apstart);
*(uint64*)(code-12) = (uint64) (stack+KSTACKSIZE);
lapicstartap(c->apicid, V2P(code));
// wait for cpu to finish mpmain()
while(c->started == 0)
;
}
}

View file

@ -1,16 +1,25 @@
// Memory layout // Physical memory layout
#define EXTMEM 0x100000 // Start of extended memory // qemu -machine virt is set up like this:
#define PHYSTOP 0xE000000 // Top physical memory // 00001000 -- boot ROM, provided by qemu
#define DEVSPACE 0xFE000000 // Other devices are top of 32-bit address space // 10000000 -- uart0 registers
#define DEVSPACETOP 0x100000000 // 80000000 -- boot ROM jumps here in machine mode
// unused RAM after 80000000.
// Key addresses for address space layout (see kmap in vm.c for layout) // the kernel uses physical memory thus:
#define KERNBASE 0xFFFFFF0000000000 // First kernel virtual address // 80000000 -- entry.S, then kernel text and data
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked // end -- start of kernel page allocation area
// PHYSTOP -- end RAM used by the kernel
#define V2P(a) (((uint64) (a)) - KERNBASE) // registers start here in physical memory.
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE)) #define UART0 0x10000000L
#define V2P_WO(x) ((x) - KERNBASE) // same as V2P, but without casts // the kernel expects there to be RAM
#define P2V_WO(x) ((x) + KERNBASE) // same as P2V, but without casts // for use by the kernel and user pages
// from physical address 0x80000000 to PHYSTOP.
#define KERNBASE 0x80000000L
#define PHYSTOP (KERNBASE + 64*1024*1024)
// map the trampoline page to the highest address,
// in both user and kernel space.
#define TRAMPOLINE (MAXVA - PGSIZE)

160
mmu.h
View file

@ -1,160 +0,0 @@
// This file contains definitions for the
// x86 memory management unit (MMU).
// Eflags register
#define FL_TF 0x00000100 // Trap Flag
#define FL_IF 0x00000200 // Interrupt Enable
// Control Register flags
#define CR0_PE 0x00000001 // Protection Enable
#define CR0_WP 0x00010000 // Write Protect
#define CR0_PG 0x80000000 // Paging
#define CR4_PSE 0x00000010 // Page size extension
// Segment selectors (indexes) in our GDTs.
// Defined by our convention, not the architecture.
#define SEG_KCODE32 (1<<3) // kernel 32-bit code segment
#define SEG_KCODE (2<<3) // kernel code segment
#define SEG_KDATA (3<<3) // kernel data segment
#define SEG_TSS (4<<3) // tss segment - takes two slots
#define SEG_UDATA (6<<3) // user data segment
#define SEG_UCODE (7<<3) // user code segment
#define NSEGS 8
#ifndef __ASSEMBLER__
struct segdesc {
uint16 limit0;
uint16 base0;
uint8 base1;
uint8 bits;
uint8 bitslimit1;
uint8 base2;
};
// SEGDESC constructs a segment descriptor literal
// with the given, base, limit, and type bits.
#define SEGDESC(base, limit, bits) (struct segdesc){ \
(limit)&0xffff, (base)&0xffff, \
((base)>>16)&0xff, \
(bits)&0xff, \
(((bits)>>4)&0xf0) | ((limit>>16)&0xf), \
((base)>>24)&0xff, \
}
// SEGDESCHI constructs an extension segment descriptor
// literal that records the high bits of base.
#define SEGDESCHI(base) (struct segdesc) { \
(((base)>>32)&0xffff), (((base)>>48)&0xffff), \
}
#endif
#define DPL_USER 0x3 // User DPL
#define SEG_A (1<<0) // segment accessed bit
#define SEG_R (1<<1) // readable (code)
#define SEG_W (1<<1) // writable (data)
#define SEG_C (1<<2) // conforming segment (code)
#define SEG_E (1<<2) // expand-down bit (data)
#define SEG_CODE (1<<3) // code segment (instead of data)
// User and system segment bits.
#define SEG_S (1<<4) // if 0, system descriptor
#define SEG_DPL(x) ((x)<<5) // descriptor privilege level (2 bits)
#define SEG_P (1<<7) // segment present
#define SEG_AVL (1<<8) // available for operating system use
#define SEG_L (1<<9) // long mode
#define SEG_D (1<<10) // default operation size 32-bit
#define SEG_G (1<<11) // granularity
// Application segment type bits
#define STA_X 0x8 // Executable segment
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
// System segment type bits
#define SEG_LDT (2<<0) // local descriptor table
#define SEG_TSS64A (9<<0) // available 64-bit TSS
#define SEG_TSS64B (11<<0) // busy 64-bit TSS
#define SEG_CALL64 (12<<0) // 64-bit call gate
#define SEG_INTR64 (14<<0) // 64-bit interrupt gate
#define SEG_TRAP64 (15<<0) // 64-bit trap gate
// A virtual address 'la' has a six-part structure as follows:
//
// +--16--+---9---+------9-------+-----9----+----9-------+----12-------+
// | Sign | PML4 |Page Directory| Page Dir |Page Table | Offset Page |
// |Extend| Index | Pointer Index| Index | Index | in Page |
// +------+-------+--------------+----------+------------+-------------+
// L3 pgtab L2 pgtab L1 pgtab L0 pgtab
// Page directory and page table constants.
#define NPDENTRIES 512 // # directory entries per page directory
#define PGSIZE 4096 // bytes mapped by a page
#define PGSHIFT 12 // offset of PTX in a linear address
#define PXMASK 0x1FF
#define PXSHIFT(n) (PGSHIFT+(9*(n))) // shift for index into level n page table
#define PX(n, va) ((((uint64) (va)) >> PXSHIFT(n)) & PXMASK)
#define L_PML4 3
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
// Page table/directory entry flags.
#define PTE_P 0x001 // Present
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size
#define PTE_PWT 0x008 // Write-Through
#define PTE_PCD 0x010 // Cache-Disable
// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint64)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint64)(pte) & 0xFFF)
#ifndef __ASSEMBLER__
typedef uint64 pte_t;
struct taskstate {
uint8 reserved0[4];
uint64 rsp[3];
uint64 ist[8];
uint8 reserved1[10];
uint16 iomba;
uint8 iopb[0];
} __attribute__ ((packed));
#define INT_P (1<<7) // interrupt descriptor present
struct intgate
{
uint16 rip0;
uint16 cs;
uint8 reserved0;
uint8 bits;
uint16 rip1;
uint32 rip2;
uint32 reserved1;
};
// INTDESC constructs an interrupt descriptor literal
// that records the given code segment, instruction pointer,
// and type bits.
#define INTDESC(cs, rip, bits) (struct intgate){ \
(rip)&0xffff, (cs), 0, bits, ((rip)>>16)&0xffff, \
(uint64)(rip)>>32, 0, \
}
// See section 4.6 of amd64 vol2
struct desctr
{
uint16 limit;
uint64 base;
} __attribute__((packed, aligned(16))); // important!
#endif

25
msr.h
View file

@ -1,25 +0,0 @@
// SYSCALL and SYSRET registers
#define MSR_STAR 0xc0000081
#define MSR_LSTAR 0xc0000082
#define MSR_CSTAR 0xc0000083
#define MSR_SFMASK 0xc0000084
// GS
#define MSR_GS_BASE 0xc0000101
#define MSR_GS_KERNBASE 0xc0000102
static inline uint64
readmsr(uint32 msr)
{
uint32 hi, lo;
__asm volatile("rdmsr" : "=d" (hi), "=a" (lo) : "c" (msr));
return ((uint64) lo) | (((uint64) hi) << 32);
}
static inline void
writemsr(uint64 msr, uint64 val)
{
uint32 lo = val & 0xffffffff;
uint32 hi = val >> 32;
__asm volatile("wrmsr" : : "c" (msr), "a" (lo), "d" (hi) : "memory");
}

View file

@ -1,5 +1,4 @@
#define NPROC 64 // maximum number of processes #define NPROC 64 // maximum number of processes
#define KSTACKSIZE 4096 // size of per-process kernel stack
#define NCPU 8 // maximum number of CPUs #define NCPU 8 // maximum number of CPUs
#define NOFILE 16 // open files per process #define NOFILE 16 // open files per process
#define NFILE 100 // open files per system #define NFILE 100 // open files per system

283
proc.c
View file

@ -1,18 +1,20 @@
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h" #include "riscv.h"
#include "x86.h"
#include "proc.h" #include "proc.h"
#include "spinlock.h" #include "spinlock.h"
#include "defs.h"
struct { struct {
struct spinlock lock; struct spinlock lock;
struct proc proc[NPROC]; struct proc proc[NPROC];
} ptable; } ptable;
static struct proc *initproc; // XXX riscv move somewhere else
struct cpu cpus[NCPU];
struct proc *initproc;
int nextpid = 1; int nextpid = 1;
extern void forkret(void); extern void forkret(void);
@ -22,57 +24,36 @@ extern void sysexit(void);
static void wakeup1(void *chan); static void wakeup1(void *chan);
extern char trampstart[]; // trampoline.S
void void
pinit(void) procinit(void)
{ {
initlock(&ptable.lock, "ptable"); initlock(&ptable.lock, "ptable");
} }
// Must be called with interrupts disabled // Must be called with interrupts disabled.
// XXX riscv
int int
cpuid() { cpuid() {
return mycpu()-cpus; return 0;
} }
// Must be called with interrupts disabled to avoid the caller being // Return this core's cpu struct.
// rescheduled between reading lapicid and running through the loop. // XXX riscv
struct cpu*
getmycpu(void)
{
int apicid, i;
if(readeflags()&FL_IF)
panic("getmycpu called with interrupts enabled\n");
apicid = lapicid();
// APIC IDs are not guaranteed to be contiguous.
for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];
}
panic("unknown apicid\n");
}
// Return this core's cpu struct using %gs. %gs points this core's struct
// cpu. Offet 24 in struct cpu is cpu.
struct cpu* struct cpu*
mycpu(void) { mycpu(void) {
struct cpu *c; struct cpu *c;
asm volatile("mov %%gs:24, %0" : "=r" (c)); c = &cpus[0];
return c; return c;
} }
// Disable interrupts so that we are not rescheduled // Disable interrupts so that we are not rescheduled
// while reading proc from the cpu structure // while reading proc from the cpu structure
// XXX riscv
struct proc* struct proc*
myproc(void) { myproc(void) {
struct cpu *c; return cpus[0].proc;
struct proc *p;
pushcli();
c = mycpu();
p = c->proc;
popcli();
return p;
} }
//PAGEBREAK: 32 //PAGEBREAK: 32
@ -84,7 +65,6 @@ static struct proc*
allocproc(void) allocproc(void)
{ {
struct proc *p; struct proc *p;
char *sp;
acquire(&ptable.lock); acquire(&ptable.lock);
@ -101,56 +81,73 @@ found:
release(&ptable.lock); release(&ptable.lock);
// Allocate kernel stack. // Allocate a page for the kernel stack.
if((p->kstack = kalloc()) == 0){ if((p->kstack = kalloc()) == 0){
p->state = UNUSED; p->state = UNUSED;
return 0; return 0;
} }
sp = p->kstack + KSTACKSIZE;
// Leave room for syscall frame. // Allocate a trapframe page.
sp -= sizeof *p->sf; if((p->tf = (struct trapframe *)kalloc()) == 0){
p->state = UNUSED;
return 0;
}
if ((uint64) sp % 16) // An empty user page table.
panic("misaligned sp"); p->pagetable = uvmcreate();
p->sf = (struct sysframe*)sp; // map the trampoline code (for system call return)
// at the highest user virtual address.
// only the supervisor uses it, on the way
// to/from user space, so not PTE_U.
mappages(p->pagetable, TRAMPOLINE, PGSIZE,
(uint64)trampstart, PTE_R | PTE_X);
// map the trapframe, for trampoline.S.
mappages(p->pagetable, (TRAMPOLINE - PGSIZE), PGSIZE,
(uint64)(p->tf), PTE_R | PTE_W);
// Set up new context to start executing at forkret, // Set up new context to start executing at forkret,
// which returns to sysexit. // which returns to user space.
sp -= sizeof(uint64); memset(&p->context, 0, sizeof p->context);
*(uint64*)sp = (uint64)sysexit; p->context.ra = (uint64)forkret;
p->context.sp = (uint64)p->kstack + PGSIZE;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->rip = (uint64)forkret;
return p; return p;
} }
// XXX hack because I don't know how to incorporate initcode
// into the kernel binary. just the exec system call, no arguments.
// manually copied from initcode.asm.
unsigned char initcode[] = {
0x85, 0x48, // li a7, 1 -- SYS_fork
0x73, 0x00, 0x00, 0x00, // ecall
0x8d, 0x48, // li a7, 3 -- SYS_wait
0x73, 0x00, 0x00, 0x00, // ecall
0x89, 0x48, // li a7, 2 -- SYS_exit
0x73, 0x00, 0x00, 0x00, // ecall
};
//PAGEBREAK: 32 //PAGEBREAK: 32
// Set up first user process. // Set up first user process.
void void
userinit(void) userinit(void)
{ {
struct proc *p; struct proc *p;
extern char _binary_initcode_start[], _binary_initcode_size[];
p = allocproc(); p = allocproc();
initproc = p; initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?"); uvminit(p->pagetable, initcode, sizeof(initcode));
inituvm(p->pgdir, _binary_initcode_start, (uint64)_binary_initcode_size);
p->sz = PGSIZE; p->sz = PGSIZE;
memset(p->sf, 0, sizeof(*p->sf));
p->sf->r11 = FL_IF; // prepare for the very first kernel->user.
p->sf->rsp = PGSIZE; p->tf->epc = 0;
p->sf->rcx = 0; // beginning of initcode.S p->tf->sp = PGSIZE;
safestrcpy(p->name, "initcode", sizeof(p->name)); safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/"); // XXX riscv
//p->cwd = namei("/");
// this assignment to p->state lets other cores // this assignment to p->state lets other cores
// run this process. the acquire forces the above // run this process. the acquire forces the above
@ -163,62 +160,65 @@ userinit(void)
release(&ptable.lock); release(&ptable.lock);
} }
#if 0
// Grow current process's memory by n bytes. // Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure. // Return 0 on success, -1 on failure.
int int
growproc(int n) growproc(int n)
{ {
uint sz; uint sz;
struct proc *curproc = myproc(); struct proc *p = myproc();
sz = curproc->sz; sz = p->sz;
if(n > 0){ if(n > 0){
if((sz = allocuvm(curproc->pgdir, sz, sz + n)) == 0) if((sz = allocuvm(p->pagetable, sz, sz + n)) == 0)
return -1; return -1;
} else if(n < 0){ } else if(n < 0){
if((sz = deallocuvm(curproc->pgdir, sz, sz + n)) == 0) if((sz = uvmdealloc(p->pagetable, sz, sz + n)) == 0)
return -1; return -1;
} }
curproc->sz = sz; p->sz = sz;
switchuvm(curproc); switchuvm(p);
return 0; return 0;
} }
#endif
// Create a new process copying p as the parent. // Create a new process, copying p as the parent.
// Sets up stack to return as if from system call. // Sets up child kernel stack to return as if from system call.
// Caller must set state of returned proc to RUNNABLE.
int int
fork(void) fork(void)
{ {
int i, pid; int i, pid;
struct proc *np; struct proc *np;
struct proc *curproc = myproc(); struct proc *p = myproc();
// Allocate process. // Allocate process.
if((np = allocproc()) == 0){ if((np = allocproc()) == 0){
return -1; return -1;
} }
// Copy process state from proc. // Copy user memory from parent to child.
if((np->pgdir = copyuvm(curproc->pgdir, curproc->sz)) == 0){ uvmcopy(p->pagetable, np->pagetable, p->sz);
kfree(np->kstack); np->sz = p->sz;
np->kstack = 0;
np->state = UNUSED;
return -1;
}
np->sz = curproc->sz;
np->parent = curproc;
*np->sf = *curproc->sf;
// Clear %eax so that fork returns 0 in the child. np->parent = p;
np->sf->rax = 0;
// copy saved user registers.
*(np->tf) = *(p->tf);
// Cause fork to return 0 in the child.
np->tf->a0 = 0;
#if 0 // XXX riscv
// increment reference counts on open file descriptors.
for(i = 0; i < NOFILE; i++) for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i]) if(p->ofile[i])
np->ofile[i] = filedup(curproc->ofile[i]); np->ofile[i] = filedup(p->ofile[i]);
np->cwd = idup(curproc->cwd); np->cwd = idup(p->cwd);
#endif
safestrcpy(np->name, curproc->name, sizeof(curproc->name)); safestrcpy(np->name, p->name, sizeof(p->name));
pid = np->pid; pid = np->pid;
@ -233,46 +233,48 @@ fork(void)
// Exit the current process. Does not return. // Exit the current process. Does not return.
// An exited process remains in the zombie state // An exited process remains in the zombie state
// until its parent calls wait() to find out it exited. // until its parent calls wait().
void void
exit(void) exit(void)
{ {
struct proc *curproc = myproc(); struct proc *p = myproc();
struct proc *p; struct proc *pp;
int fd; int fd;
if(curproc == initproc) if(p == initproc)
panic("init exiting"); panic("init exiting");
#if 0 // XXX riscv
// Close all open files. // Close all open files.
for(fd = 0; fd < NOFILE; fd++){ for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd]){ if(p->ofile[fd]){
fileclose(curproc->ofile[fd]); fileclose(p->ofile[fd]);
curproc->ofile[fd] = 0; p->ofile[fd] = 0;
} }
} }
begin_op(); begin_op();
iput(curproc->cwd); iput(p->cwd);
end_op(); end_op();
curproc->cwd = 0; #endif
p->cwd = 0;
acquire(&ptable.lock); acquire(&ptable.lock);
// Parent might be sleeping in wait(). // Parent might be sleeping in wait().
wakeup1(curproc->parent); wakeup1(p->parent);
// Pass abandoned children to init. // Pass abandoned children to init.
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ for(pp = ptable.proc; pp < &ptable.proc[NPROC]; pp++){
if(p->parent == curproc){ if(pp->parent == p){
p->parent = initproc; pp->parent = initproc;
if(p->state == ZOMBIE) if(pp->state == ZOMBIE)
wakeup1(initproc); wakeup1(initproc);
} }
} }
// Jump into the scheduler, never to return. // Jump into the scheduler, never to return.
curproc->state = ZOMBIE; p->state = ZOMBIE;
sched(); sched();
panic("zombie exit"); panic("zombie exit");
} }
@ -282,42 +284,47 @@ exit(void)
int int
wait(void) wait(void)
{ {
struct proc *p; struct proc *np;
int havekids, pid; int havekids, pid;
struct proc *curproc = myproc(); struct proc *p = myproc();
acquire(&ptable.lock); acquire(&ptable.lock);
for(;;){ for(;;){
// Scan through table looking for exited children. // Scan through table looking for exited children.
havekids = 0; havekids = 0;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){ for(np = ptable.proc; np < &ptable.proc[NPROC]; np++){
if(p->parent != curproc) if(np->parent != p)
continue; continue;
havekids = 1; havekids = 1;
if(p->state == ZOMBIE){ if(np->state == ZOMBIE){
// Found one. // Found one.
pid = p->pid; pid = np->pid;
kfree(p->kstack); kfree(np->kstack);
p->kstack = 0; np->kstack = 0;
freevm(p->pgdir, p->sz); kfree((void*)np->tf);
p->pid = 0; np->tf = 0;
p->parent = 0; unmappages(np->pagetable, TRAMPOLINE, PGSIZE, 0);
p->name[0] = 0; unmappages(np->pagetable, TRAMPOLINE-PGSIZE, PGSIZE, 0);
p->killed = 0; uvmfree(np->pagetable, np->sz);
p->state = UNUSED; np->pagetable = 0;
np->pid = 0;
np->parent = 0;
np->name[0] = 0;
np->killed = 0;
np->state = UNUSED;
release(&ptable.lock); release(&ptable.lock);
return pid; return pid;
} }
} }
// No point waiting if we don't have any children. // No point waiting if we don't have any children.
if(!havekids || curproc->killed){ if(!havekids || p->killed){
release(&ptable.lock); release(&ptable.lock);
return -1; return -1;
} }
// Wait for children to exit. (See wakeup1 call in proc_exit.) // Wait for children to exit. (See wakeup1 call in proc_exit.)
sleep(curproc, &ptable.lock); //DOC: wait-sleep sleep(p, &ptable.lock); //DOC: wait-sleep
} }
} }
@ -338,7 +345,8 @@ scheduler(void)
c->proc = 0; c->proc = 0;
for(;;){ for(;;){
// Enable interrupts on this processor. // Enable interrupts on this processor.
sti(); // XXX riscv
//sti();
// Loop over process table looking for process to run. // Loop over process table looking for process to run.
acquire(&ptable.lock); acquire(&ptable.lock);
@ -350,11 +358,11 @@ scheduler(void)
// to release ptable.lock and then reacquire it // to release ptable.lock and then reacquire it
// before jumping back to us. // before jumping back to us.
c->proc = p; c->proc = p;
switchuvm(p);
p->state = RUNNING; p->state = RUNNING;
swtch(&(c->scheduler), p->context); printf("switch...\n");
switchkvm(); swtch(&c->scheduler, &p->context);
printf("switch returned\n");
// Process is done running for now. // Process is done running for now.
// It should have changed its p->state before coming back. // It should have changed its p->state before coming back.
@ -380,14 +388,10 @@ sched(void)
if(!holding(&ptable.lock)) if(!holding(&ptable.lock))
panic("sched ptable.lock"); panic("sched ptable.lock");
if(mycpu()->ncli != 1)
panic("sched locks");
if(p->state == RUNNING) if(p->state == RUNNING)
panic("sched running"); panic("sched running");
if(readeflags()&FL_IF)
panic("sched interruptible");
intena = mycpu()->intena; intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler); swtch(&p->context, &mycpu()->scheduler);
mycpu()->intena = intena; mycpu()->intena = intena;
} }
@ -402,24 +406,29 @@ yield(void)
} }
// A fork child's very first scheduling by scheduler() // A fork child's very first scheduling by scheduler()
// will swtch here. "Return" to user space. // will swtch to forkret.
void void
forkret(void) forkret(void)
{ {
struct proc *p = myproc();
static int first = 1; static int first = 1;
// Still holding ptable.lock from scheduler. // Still holding ptable.lock from scheduler.
release(&ptable.lock); release(&ptable.lock);
printf("entering forkret\n");
if (first) { if (first) {
// Some initialization functions must be run in the context // Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot // of a regular process (e.g., they call sleep), and thus cannot
// be run from main(). // be run from main().
first = 0; first = 0;
iinit(ROOTDEV); // XXX riscv
initlog(ROOTDEV); //iinit(ROOTDEV);
//initlog(ROOTDEV);
} }
// Return to "caller", actually trapret (see allocproc). usertrapret();
} }
// Atomically release lock and sleep on chan. // Atomically release lock and sleep on chan.
@ -483,6 +492,8 @@ wakeup(void *chan)
release(&ptable.lock); release(&ptable.lock);
} }
#if 0
// Kill the process with the given pid. // Kill the process with the given pid.
// Process won't exit until it returns // Process won't exit until it returns
// to user space (see trap in trap.c). // to user space (see trap in trap.c).
@ -533,12 +544,14 @@ procdump(void)
state = states[p->state]; state = states[p->state];
else else
state = "???"; state = "???";
cprintf("%d %s %s", p->pid, state, p->name); printf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){ if(p->state == SLEEPING){
getcallerpcs((uint64*)p->context->rbp+2, pc); getcallerpcs((uint64*)p->context->rbp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++) for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]); printf(" %p", pc[i]);
} }
cprintf("\n"); printf("\n");
} }
} }
#endif

84
proc.h
View file

@ -1,13 +1,30 @@
// Saved registers for kernel context switches.
struct context {
uint64 ra;
uint64 sp;
// callee-saved
uint64 s0;
uint64 s1;
uint64 s2;
uint64 s3;
uint64 s4;
uint64 s5;
uint64 s6;
uint64 s7;
uint64 s8;
uint64 s9;
uint64 s10;
uint64 s11;
};
// Per-CPU state // Per-CPU state
struct cpu { struct cpu {
uint64 syscallno; // Temporary used by sysentry uint64 syscallno; // Temporary used by sysentry
uint64 usp; // Temporary used by sysentry uint64 usp; // Temporary used by sysentry
struct proc *proc; // The process running on this cpu or null struct proc *proc; // The process running on this cpu or null
struct cpu *cpu; // XXX struct cpu *cpu; // XXX
uchar apicid; // Local APIC ID struct context scheduler; // swtch() here to enter scheduler
struct context *scheduler; // swtch() here to enter scheduler
struct taskstate ts; // Used by x86 to find stack for interrupt
struct segdesc gdt[NSEGS]; // x86 global descriptor table
volatile uint started; // Has the CPU started? volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting. int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli? int intena; // Were interrupts enabled before pushcli?
@ -17,39 +34,52 @@ extern struct cpu cpus[NCPU];
extern int ncpu; extern int ncpu;
//PAGEBREAK: 17 //PAGEBREAK: 17
// Saved registers for kernel context switches.
// Don't need to save all the segment registers (%cs, etc), // per-process data for the early trap handling code in trampoline.S.
// because they are constant across kernel contexts. // sits in a page by itself just under the trampoline page in the
// Don't need to save %eax, %ecx, %edx, because the // user page table. not specially mapped in the kernel page table.
// x86 convention is that the caller has saved them. // the sscratch register points here.
// Contexts are stored at the bottom of the stack they // trampoline.S saves user registers, then restores kernel_sp and
// describe; the stack pointer is the address of the context. // kernel_satp.
// The layout of the context matches the layout of the stack in swtch.S // no need to save s0-s11 (callee-saved) since C code and swtch() save them.
// at the "Switch stacks" comment. Switch doesn't save eip explicitly, struct trapframe {
// but it is on the stack and allocproc() manipulates it. /* 0 */ uint64 kernel_satp;
struct context { /* 8 */ uint64 kernel_sp;
uint64 r15; /* 16 */ uint64 kernel_trap; // address of trap()
uint64 r14; /* 24 */ uint64 epc; // saved user program counter
uint64 r13; /* 32 */ uint64 ra;
uint64 r12; /* 40 */ uint64 sp;
uint64 r11; /* 48 */ uint64 gp;
uint64 rbx; /* 56 */ uint64 tp;
uint64 rbp; /* 64 */ uint64 t0;
uint64 rip; /* 72 */ uint64 t1;
/* 80 */ uint64 t2;
/* 88 */ uint64 a0;
/* 96 */ uint64 a1;
/* 104 */ uint64 a2;
/* 112 */ uint64 a3;
/* 120 */ uint64 a4;
/* 128 */ uint64 a5;
/* 136 */ uint64 a6;
/* 144 */ uint64 a7;
/* 152 */ uint64 t3;
/* 160 */ uint64 t4;
/* 168 */ uint64 t5;
/* 176 */ uint64 t6;
}; };
enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE }; enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state // Per-process state
struct proc { struct proc {
char *kstack; // Bottom of kernel stack for this process, must be first entry char *kstack; // Bottom of kernel stack for this process
uint64 sz; // Size of process memory (bytes) uint64 sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table pagetable_t pagetable; // Page table
enum procstate state; // Process state enum procstate state; // Process state
int pid; // Process ID int pid; // Process ID
struct proc *parent; // Parent process struct proc *parent; // Parent process
struct sysframe *sf; // Syscall frame for current syscall struct trapframe *tf; // data page for trampoline.S
struct context *context; // swtch() here to run process struct context context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files struct file *ofile[NOFILE]; // Open files

172
riscv.h Normal file
View file

@ -0,0 +1,172 @@
// Machine Status Register, mstatus
#define MSTATUS_MPP_MASK (3L << 11)
#define MSTATUS_MPP_M (3L << 11)
#define MSTATUS_MPP_S (1L << 11)
#define MSTATUS_MPP_U (0L << 11)
static inline uint64
r_mstatus()
{
uint64 x;
asm("csrr %0, mstatus" : "=r" (x) );
return x;
}
static inline void
w_mstatus(uint64 x)
{
asm("csrw mstatus, %0" : : "r" (x));
}
// machine exception program counter, holds the
// instruction address to which a return from
// exception will go.
static inline void
w_mepc(uint64 x)
{
asm("csrw mepc, %0" : : "r" (x));
}
// Supervisor Status Register, sstatus
#define SSTATUS_SPP (1L << 8) // 1=Supervisor, 0=User
static inline uint64
r_sstatus()
{
uint64 x;
asm("csrr %0, sstatus" : "=r" (x) );
return x;
}
static inline void
w_sstatus(uint64 x)
{
asm("csrw sstatus, %0" : : "r" (x));
}
// machine exception program counter, holds the
// instruction address to which a return from
// exception will go.
static inline void
w_sepc(uint64 x)
{
asm("csrw sepc, %0" : : "r" (x));
}
static inline uint64
r_sepc()
{
uint64 x;
asm("csrr %0, sepc" : "=r" (x) );
return x;
}
// Machine Exception Delegation
static inline uint64
r_medeleg()
{
uint64 x;
asm("csrr %0, medeleg" : "=r" (x) );
return x;
}
static inline void
w_medeleg(uint64 x)
{
asm("csrw medeleg, %0" : : "r" (x));
}
// Machine Interrupt Delegation
static inline uint64
r_mideleg()
{
uint64 x;
asm("csrr %0, mideleg" : "=r" (x) );
return x;
}
static inline void
w_mideleg(uint64 x)
{
asm("csrw mideleg, %0" : : "r" (x));
}
// Supervisor Trap-Vector Base Address
// low two bits are mode.
static inline void
w_stvec(uint64 x)
{
asm("csrw stvec, %0" : : "r" (x));
}
// use riscv's sv39 page table scheme.
#define SATP_SV39 (8L << 60)
#define MAKE_SATP(pagetable) (SATP_SV39 | (((uint64)pagetable) >> 12))
// supervisor address translation and protection;
// holds the address of the page table.
static inline void
w_satp(uint64 x)
{
asm("csrw satp, %0" : : "r" (x));
}
static inline uint64
r_satp()
{
uint64 x;
asm("csrr %0, satp" : "=r" (x) );
return x;
}
// Supervisor Scratch register, for early trap handler in trampoline.S.
static inline void
w_sscratch(uint64 x)
{
asm("csrw sscratch, %0" : : "r" (x));
}
// Supervisor trap cause
static inline uint64
r_scause()
{
uint64 x;
asm("csrr %0, scause" : "=r" (x) );
return x;
}
#define PGSIZE 4096 // bytes per page
#define PGSHIFT 12 // bits of offset within a page
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
#define PTE_V (1L << 0) // valid
#define PTE_R (1L << 1)
#define PTE_W (1L << 2)
#define PTE_X (1L << 3)
#define PTE_U (1L << 4) // 1 -> user can access
// shift a physical address to the right place for a PTE.
#define PA2PTE(pa) ((((uint64)pa) >> 12) << 10)
#define PTE2PA(pte) (((pte) >> 10) << 12)
#define PTE_FLAGS(pte) ((pte) & (PTE_V|PTE_R|PTE_W|PTE_X|PTE_U))
// extract the three 9-bit page table indices from a virtual address.
#define PXMASK 0x1FF // 9 bits
#define PXSHIFT(level) (PGSHIFT+(9*(level)))
#define PX(level, va) ((((uint64) (va)) >> PXSHIFT(level)) & PXMASK)
// one beyond the highest possible virtual address.
// MAXVA is actually one bit less than the max allowed by
// Sv39, to avoid having to sign-extend virtual addresses
// that have the high bit set.
#define MAXVA (1L << (9 + 9 + 9 + 12 - 1))
typedef uint64 pte_t;
typedef uint64 *pagetable_t; // 512 PTEs

View file

@ -1,13 +1,11 @@
// Mutual exclusion spin locks. // Mutual exclusion spin locks.
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "x86.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "spinlock.h" #include "spinlock.h"
#include "riscv.h"
#include "defs.h"
void void
initlock(struct spinlock *lk, char *name) initlock(struct spinlock *lk, char *name)
@ -17,6 +15,27 @@ initlock(struct spinlock *lk, char *name)
lk->cpu = 0; lk->cpu = 0;
} }
void
acquire(struct spinlock *lk)
{
lk->locked = 1;
lk->cpu = mycpu();
}
void
release(struct spinlock *lk)
{
lk->locked = 0;
lk->cpu = 0;
}
int
holding(struct spinlock *lk)
{
return lk->locked && lk->cpu == mycpu();
}
#if 0
// Acquire the lock. // Acquire the lock.
// Loops (spins) until the lock is acquired. // Loops (spins) until the lock is acquired.
// Holding a lock for a long time may cause // Holding a lock for a long time may cause
@ -37,7 +56,7 @@ acquire(struct spinlock *lk)
// references happen after the lock is acquired. // references happen after the lock is acquired.
__sync_synchronize(); __sync_synchronize();
// Record info about lock acquisition for debugging. // Record info about lock acquisition for holding() and debugging.
lk->cpu = mycpu(); lk->cpu = mycpu();
getcallerpcs(&lk, lk->pcs); getcallerpcs(&lk, lk->pcs);
} }
@ -87,11 +106,11 @@ getcallerpcs(void *v, uint64 pcs[])
// Check whether this cpu is holding the lock. // Check whether this cpu is holding the lock.
int int
holding(struct spinlock *lock) holding(struct spinlock *lk)
{ {
int r; int r;
pushcli(); pushcli();
r = lock->locked && lock->cpu == mycpu(); r = lk->locked && lk->cpu == mycpu();
popcli(); popcli();
return r; return r;
} }
@ -123,4 +142,4 @@ popcli(void)
if(mycpu()->ncli == 0 && mycpu()->intena) if(mycpu()->ncli == 0 && mycpu()->intena)
sti(); sti();
} }
#endif

34
start.c Normal file
View file

@ -0,0 +1,34 @@
#include "types.h"
#include "memlayout.h"
#include "riscv.h"
#include "defs.h"
void main();
// entry.S uses this as the initial stack.
char stack0[4096];
// entry.S jumps here in machine mode on stack0.
void
mstart()
{
// set M Previous Privilege mode to Supervisor, for mret.
unsigned long x = r_mstatus();
x &= ~MSTATUS_MPP_MASK;
x |= MSTATUS_MPP_S;
w_mstatus(x);
// set M Exception Program Counter to main, for mret.
// requires gcc -mcmodel=medany
w_mepc((uint64)main);
// disable paging for now.
w_satp(0);
// delegate all interrupts and exceptions to supervisor mode.
w_medeleg(0xffff);
w_mideleg(0xffff);
// jump to main in supervisor mode.
asm("mret");
}

View file

@ -1,14 +1,13 @@
#include "types.h" #include "types.h"
#include "x86.h"
void* void*
memset(void *dst, int c, uint n) memset(void *dst, int c, uint n)
{ {
if ((uint64)dst%4 == 0 && n%4 == 0){ char *cdst = (char *) dst;
c &= 0xFF; int i;
stosl(dst, (c<<24)|(c<<16)|(c<<8)|c, n/4); for(i = 0; i < n; i++){
} else cdst[i] = c;
stosb(dst, c, n); }
return dst; return dst;
} }

55
swtch.S
View file

@ -1,34 +1,41 @@
# Context switch # Context switch
# #
# void swtch(struct context **old, struct context *new); # void swtch(struct context *old, struct context *new);
# #
# Save the current registers on the stack, creating # Save current registers in old. Load from new.
# a struct context, and save its address in *old.
# Switch stacks to new and pop previously-saved registers.
.globl swtch .globl swtch
swtch: swtch:
# Save old callee-saved registers sd ra, 0(a0)
push %rbp sd sp, 8(a0)
push %rbx sd s0, 16(a0)
push %r11 sd s1, 24(a0)
push %r12 sd s2, 32(a0)
push %r13 sd s3, 40(a0)
push %r14 sd s4, 48(a0)
push %r15 sd s5, 56(a0)
sd s6, 64(a0)
sd s7, 72(a0)
sd s8, 80(a0)
sd s9, 88(a0)
sd s10, 96(a0)
sd s11, 104(a0)
# Switch stacks ld ra, 0(a1)
mov %rsp, (%rdi) # first arg of swtch is in rdi ld sp, 8(a1)
mov %rsi, %rsp # second arg of swtch is in rsi ld s0, 16(a1)
ld s1, 24(a1)
# Load new callee-saved registers ld s2, 32(a1)
pop %r15 ld s3, 40(a1)
pop %r14 ld s4, 48(a1)
pop %r13 ld s5, 56(a1)
pop %r12 ld s6, 64(a1)
pop %r11 ld s7, 72(a1)
pop %rbx ld s8, 80(a1)
pop %rbp ld s9, 88(a1)
ld s10, 96(a1)
ld s11, 104(a1)
ret ret

View file

@ -1,11 +1,10 @@
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h" #include "riscv.h"
#include "proc.h" #include "proc.h"
#include "x86.h"
#include "syscall.h" #include "syscall.h"
#include "defs.h"
// User code makes a system call with INT T_SYSCALL. // User code makes a system call with INT T_SYSCALL.
// System call number in %eax. // System call number in %eax.
@ -17,9 +16,9 @@
int int
fetchint(uint64 addr, int *ip) fetchint(uint64 addr, int *ip)
{ {
struct proc *curproc = myproc(); struct proc *p = myproc();
if(addr >= curproc->sz || addr+4 > curproc->sz) if(addr >= p->sz || addr+4 > p->sz)
return -1; return -1;
*ip = *(uint64*)(addr); *ip = *(uint64*)(addr);
return 0; return 0;
@ -29,8 +28,8 @@ fetchint(uint64 addr, int *ip)
int int
fetchaddr(uint64 addr, uint64 *ip) fetchaddr(uint64 addr, uint64 *ip)
{ {
struct proc *curproc = myproc(); struct proc *p = myproc();
if(addr >= curproc->sz || addr+sizeof(uint64) > curproc->sz) if(addr >= p->sz || addr+sizeof(uint64) > p->sz)
return -1; return -1;
*ip = *(uint64*)(addr); *ip = *(uint64*)(addr);
return 0; return 0;
@ -43,12 +42,12 @@ int
fetchstr(uint64 addr, char **pp) fetchstr(uint64 addr, char **pp)
{ {
char *s, *ep; char *s, *ep;
struct proc *curproc = myproc(); struct proc *p = myproc();
if(addr >= curproc->sz) if(addr >= p->sz)
return -1; return -1;
*pp = (char*)addr; *pp = (char*)addr;
ep = (char*)curproc->sz; ep = (char*)p->sz;
for(s = *pp; s < ep; s++){ for(s = *pp; s < ep; s++){
if(*s == 0) if(*s == 0)
return s - *pp; return s - *pp;
@ -59,20 +58,20 @@ fetchstr(uint64 addr, char **pp)
static uint64 static uint64
fetcharg(int n) fetcharg(int n)
{ {
struct proc *curproc = myproc(); struct proc *p = myproc();
switch (n) { switch (n) {
case 0: case 0:
return curproc->sf->rdi; return p->tf->a0;
case 1: case 1:
return curproc->sf->rsi; return p->tf->a1;
case 2: case 2:
return curproc->sf->rdx; return p->tf->a2;
case 3: case 3:
return curproc->sf->r10; return p->tf->a3;
case 4: case 4:
return curproc->sf->r8; return p->tf->a4;
case 5: case 5:
return curproc->sf->r9; return p->tf->a5;
} }
panic("fetcharg"); panic("fetcharg");
return -1; return -1;
@ -100,11 +99,11 @@ int
argptr(int n, char **pp, int size) argptr(int n, char **pp, int size)
{ {
uint64 i; uint64 i;
struct proc *curproc = myproc(); struct proc *p = myproc();
if(argaddr(n, &i) < 0) if(argaddr(n, &i) < 0)
return -1; return -1;
if(size < 0 || (uint)i >= curproc->sz || (uint)i+size > curproc->sz) if(size < 0 || (uint)i >= p->sz || (uint)i+size > p->sz)
return -1; return -1;
*pp = (char*)i; *pp = (char*)i;
return 0; return 0;
@ -149,48 +148,47 @@ static int (*syscalls[])(void) = {
[SYS_fork] sys_fork, [SYS_fork] sys_fork,
[SYS_exit] sys_exit, [SYS_exit] sys_exit,
[SYS_wait] sys_wait, [SYS_wait] sys_wait,
[SYS_pipe] sys_pipe, //[SYS_pipe] sys_pipe,
[SYS_read] sys_read, //[SYS_read] sys_read,
[SYS_kill] sys_kill, //[SYS_kill] sys_kill,
[SYS_exec] sys_exec, //[SYS_exec] sys_exec,
[SYS_fstat] sys_fstat, //[SYS_fstat] sys_fstat,
[SYS_chdir] sys_chdir, //[SYS_chdir] sys_chdir,
[SYS_dup] sys_dup, //[SYS_dup] sys_dup,
[SYS_getpid] sys_getpid, [SYS_getpid] sys_getpid,
[SYS_sbrk] sys_sbrk, //[SYS_sbrk] sys_sbrk,
[SYS_sleep] sys_sleep, //[SYS_sleep] sys_sleep,
[SYS_uptime] sys_uptime, //[SYS_uptime] sys_uptime,
[SYS_open] sys_open, //[SYS_open] sys_open,
[SYS_write] sys_write, //[SYS_write] sys_write,
[SYS_mknod] sys_mknod, //[SYS_mknod] sys_mknod,
[SYS_unlink] sys_unlink, //[SYS_unlink] sys_unlink,
[SYS_link] sys_link, //[SYS_link] sys_link,
[SYS_mkdir] sys_mkdir, //[SYS_mkdir] sys_mkdir,
[SYS_close] sys_close, //[SYS_close] sys_close,
}; };
static void static void
dosyscall(void) dosyscall(void)
{ {
int num; int num;
struct proc *curproc = myproc(); struct proc *p = myproc();
num = curproc->sf->rax; num = p->tf->a7;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) { if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
curproc->sf->rax = syscalls[num](); p->tf->a0 = syscalls[num]();
} else { } else {
cprintf("%d %s: unknown sys call %d\n", printf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num); p->pid, p->name, num);
curproc->sf->rax = -1; p->tf->a0 = -1;
} }
} }
void void
syscall(struct sysframe *sf) syscall()
{ {
if(myproc()->killed) if(myproc()->killed)
exit(); exit();
myproc()->sf = sf;
dosyscall(); dosyscall();
if(myproc()->killed) if(myproc()->killed)
exit(); exit();

View file

@ -41,11 +41,11 @@ static int
fdalloc(struct file *f) fdalloc(struct file *f)
{ {
int fd; int fd;
struct proc *curproc = myproc(); struct proc *p = myproc();
for(fd = 0; fd < NOFILE; fd++){ for(fd = 0; fd < NOFILE; fd++){
if(curproc->ofile[fd] == 0){ if(p->ofile[fd] == 0){
curproc->ofile[fd] = f; p->ofile[fd] = f;
return fd; return fd;
} }
} }
@ -374,7 +374,7 @@ sys_chdir(void)
{ {
char *path; char *path;
struct inode *ip; struct inode *ip;
struct proc *curproc = myproc(); struct proc *p = myproc();
begin_op(); begin_op();
if(argstr(0, &path) < 0 || (ip = namei(path)) == 0){ if(argstr(0, &path) < 0 || (ip = namei(path)) == 0){
@ -388,9 +388,9 @@ sys_chdir(void)
return -1; return -1;
} }
iunlock(ip); iunlock(ip);
iput(curproc->cwd); iput(p->cwd);
end_op(); end_op();
curproc->cwd = ip; p->cwd = ip;
return 0; return 0;
} }

View file

@ -1,18 +1,11 @@
#include "types.h" #include "types.h"
#include "x86.h" #include "riscv.h"
#include "defs.h" #include "defs.h"
#include "date.h" #include "date.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h"
#include "proc.h" #include "proc.h"
int
sys_fork(void)
{
return fork();
}
int int
sys_exit(void) sys_exit(void)
{ {
@ -20,12 +13,25 @@ sys_exit(void)
return 0; // not reached return 0; // not reached
} }
int
sys_getpid(void)
{
return myproc()->pid;
}
int
sys_fork(void)
{
return fork();
}
int int
sys_wait(void) sys_wait(void)
{ {
return wait(); return wait();
} }
#if 0
int int
sys_kill(void) sys_kill(void)
{ {
@ -36,12 +42,6 @@ sys_kill(void)
return kill(pid); return kill(pid);
} }
int
sys_getpid(void)
{
return myproc()->pid;
}
int int
sys_sbrk(void) sys_sbrk(void)
{ {
@ -89,3 +89,4 @@ sys_uptime(void)
release(&tickslock); release(&tickslock);
return xticks; return xticks;
} }
#endif

108
trampoline.S Normal file
View file

@ -0,0 +1,108 @@
#
# code to switch between user and kernel space.
#
# this code is mapped at the same virtual address
# in user and kernel space so that it can switch
# page tables.
#
# kernel.ld causes trampstart to be aligned
# to a page boundary.
#
.globl usertrap
.section trampoline
.globl trampstart
trampstart:
# switch from kernel to user.
# a0: p->tf in user page table
# a1: new value for satp, for user page table
# switch to user page table
csrw satp, a1
# put the saved user a0 in sscratch, so we
# can swap it with our a0 (p->tf) in the last step.
ld t0, 80(a0)
csrw sscratch, t0
# restore all but a0 from p->tf
ld ra, 32(a0)
ld sp, 40(a0)
ld gp, 48(a0)
ld tp, 56(a0)
ld t0, 64(a0)
ld t1, 72(a0)
ld t2, 80(a0)
ld a1, 96(a0)
ld a2, 104(a0)
ld a3, 112(a0)
ld a4, 120(a0)
ld a5, 128(a0)
ld a6, 136(a0)
ld a7, 144(a0)
ld t3, 152(a0)
ld t4, 160(a0)
ld t5, 168(a0)
ld t6, 176(a0)
# restore user a0, and save p->tf
csrrw a0, sscratch, a0
# return to user mode and user pc.
# caller has set up sstatus and sepc.
sret
#
# trap.c set stvec to point here, so
# interrupts and exceptions start here,
# in supervisor mode, but with a
# user page table.
#
# sscratch points to where the process's p->tf is
# mapped into user space (TRAMPOLINE - 4096).
#
.align 4
.globl trampvec
trampvec:
# swap a0 and sscratch
# so that a0 is p->tf
csrrw a0, sscratch, a0
# save the user registers in p->tf
sd ra, 32(a0)
sd sp, 40(a0)
sd gp, 48(a0)
sd tp, 56(a0)
sd t0, 64(a0)
sd t1, 72(a0)
sd t2, 80(a0)
sd a1, 96(a0)
sd a2, 104(a0)
sd a3, 112(a0)
sd a4, 120(a0)
sd a5, 128(a0)
sd a6, 136(a0)
sd a7, 144(a0)
sd t3, 152(a0)
sd t4, 160(a0)
sd t5, 168(a0)
sd t6, 176(a0)
# save the user a0 in p->tf->a0
csrr t0, sscratch
sd t0, 80(a0)
# restore kernel stack pointer from p->tf->kernel_sp
ld sp, 8(a0)
# remember the address of usertrap(), p->tf->kernel_trap
ld t0, 16(a0)
# restore kernel page table from p->tf->kernel_satp
ld t1, 0(a0)
csrw satp, t1
# a0 is no longer valid, since the kernel page
# table does not specially map p->td.
# jump to usertrap(), which does not return
jr t0

160
trap.c
View file

@ -1,109 +1,113 @@
#include "types.h" #include "types.h"
#include "defs.h"
#include "param.h" #include "param.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h" #include "riscv.h"
#include "proc.h" #include "proc.h"
#include "x86.h"
#include "traps.h"
#include "spinlock.h" #include "spinlock.h"
#include "defs.h"
// Interrupt descriptor table (shared by all CPUs).
struct intgate idt[256];
extern uint64 vectors[]; // in vectors.S: array of 256 entry pointers
struct spinlock tickslock; struct spinlock tickslock;
uint ticks; uint ticks;
extern char trampstart[], trampvec[];
void kerneltrap();
void void
tvinit(void) trapinit(void)
{ {
int i; int i;
for(i=0; i<256; i++) { // send interrupts and exceptions to kerneltrap().
idt[i] = INTDESC(SEG_KCODE, vectors[i], INT_P | SEG_INTR64); w_stvec((uint64)kerneltrap);
}
idtinit();
initlock(&tickslock, "time"); initlock(&tickslock, "time");
} }
//
// handle an interrupt, exception, or system call from user space.
// called from trampoline.S
//
void void
idtinit(void) usertrap(void)
{ {
struct desctr dtr; if((r_sstatus() & SSTATUS_SPP) != 0)
panic("usertrap: not from user mode");
dtr.limit = sizeof(idt) - 1; // send interrupts and exceptions to kerneltrap(),
dtr.base = (uint64)idt; // since we're now in the kernel.
lidt((void *)&dtr.limit); w_stvec((uint64)kerneltrap);
struct proc *p = myproc();
// save user program counter.
p->tf->epc = r_sepc();
if(r_scause() == 8){
// system call
printf("usertrap(): system call pid=%d syscall=%d\n", p->pid, p->tf->a7);
// sepc points to the ecall instruction,
// but we want to return to the next instruction.
p->tf->epc += 4;
syscall();
} else {
printf("usertrap(): unexpected scause 0x%x pid=%d\n", r_scause(), p->pid);
panic("usertrap");
}
usertrapret();
} }
//PAGEBREAK: 41 //
// return to user space
//
void void
trap(struct trapframe *tf) usertrapret(void)
{ {
switch(tf->trapno){ struct proc *p = myproc();
case T_IRQ0 + IRQ_TIMER:
if(cpuid() == 0){
acquire(&tickslock);
ticks++;
wakeup(&ticks);
release(&tickslock);
}
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE:
ideintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_IDE+1:
// Bochs generates spurious IDE1 interrupts.
break;
case T_IRQ0 + IRQ_KBD:
kbdintr();
lapiceoi();
break;
case T_IRQ0 + IRQ_COM1:
uartintr();
lapiceoi();
break;
case T_IRQ0 + 7:
case T_IRQ0 + IRQ_SPURIOUS:
cprintf("cpu%d: spurious interrupt at %x:%x\n",
cpuid(), tf->cs, tf->rip);
lapiceoi();
break;
//PAGEBREAK: 13 // XXX turn off interrupts, since we're switching
default: // now from kerneltrap() to usertrap().
if(myproc() == 0 || (tf->cs&3) == 0){
// In kernel, it must be our mistake.
cprintf("unexpected trap %d from cpu %d rip %x (cr2=0x%x)\n",
tf->trapno, cpuid(), tf->rip, rcr2());
panic("trap");
}
// In user space, assume process misbehaved.
cprintf("pid %d %s: trap %d err %d on cpu %d "
"rip 0x%x addr 0x%x--kill proc\n",
myproc()->pid, myproc()->name, tf->trapno,
tf->err, cpuid(), tf->rip, rcr2());
myproc()->killed = 1;
}
// Force process exit if it has been killed and is in user space. // send interrupts and exceptions to trampoline.S
// (If it is still executing in the kernel, let it keep running w_stvec(TRAMPOLINE + (trampvec - trampstart));
// until it gets to the regular system call return.)
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit();
// Force process to give up CPU on clock tick. // set up values that trampoline.S will need when
// If interrupts were on while locks held, would need to check nlock. // the process next re-enters the kernel.
if(myproc() && myproc()->state == RUNNING && p->tf->kernel_satp = r_satp();
tf->trapno == T_IRQ0+IRQ_TIMER) p->tf->kernel_sp = (uint64)p->kstack + PGSIZE;
yield(); p->tf->kernel_trap = (uint64)usertrap;
// Check if the process has been killed since we yielded // set up the registers that trampoline.S's sret will use
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER) // to get to user space.
exit();
// set S Previous Privilege mode to User.
unsigned long x = r_sstatus();
x &= ~SSTATUS_SPP; // clear SPP to 0 for user mode
w_sstatus(x);
// set S Exception Program Counter to the saved user pc.
w_sepc(p->tf->epc);
// tell trampline.S the user page table to switch to.
uint64 satp = MAKE_SATP(p->pagetable);
// jump to trampoline.S at the top of memory, which
// switches to the user page table, restores user registers,
// and switches to user mode with sret.
((void (*)(uint64,uint64))TRAMPOLINE)(TRAMPOLINE - PGSIZE, satp);
} }
// interrupts and exceptions from kernel code go here,
// on whatever the current kernel stack is.
// must be 4-byte aligned to fit in stvec.
void __attribute__ ((aligned (4)))
kerneltrap()
{
if((r_sstatus() & SSTATUS_SPP) == 0)
panic("kerneltrap: not from supervisor mode");
panic("kerneltrap");
}

36
traps.h
View file

@ -1,36 +0,0 @@
// x86 trap and interrupt constants.
// Processor-defined:
#define T_DIVIDE 0 // divide error
#define T_DEBUG 1 // debug exception
#define T_NMI 2 // non-maskable interrupt
#define T_BRKPT 3 // breakpoint
#define T_OFLOW 4 // overflow
#define T_BOUND 5 // bounds check
#define T_ILLOP 6 // illegal opcode
#define T_DEVICE 7 // device not available
#define T_DBLFLT 8 // double fault
// #define T_COPROC 9 // reserved (not used since 486)
#define T_TSS 10 // invalid task switch segment
#define T_SEGNP 11 // segment not present
#define T_STACK 12 // stack exception
#define T_GPFLT 13 // general protection fault
#define T_PGFLT 14 // page fault
// #define T_RES 15 // reserved
#define T_FPERR 16 // floating point error
#define T_ALIGN 17 // aligment check
#define T_MCHK 18 // machine check
#define T_SIMDERR 19 // SIMD floating point error
#define T_DEFAULT 500 // catchall
#define T_IRQ0 32 // IRQ 0 corresponds to int T_IRQ
#define IRQ_TIMER 0
#define IRQ_KBD 1
#define IRQ_COM1 4
#define IRQ_IDE 14
#define IRQ_ERROR 19
#define IRQ_SPURIOUS 31

74
uart.c
View file

@ -1,77 +1,51 @@
// Intel 8250 serial port (UART). #include "memlayout.h"
#include "types.h" //
#include "defs.h" // qemu -machine virt has a 16550a UART
#include "param.h" // qemu/hw/riscv/virt.c
#include "traps.h" // http://byterunner.com/16550.html
#include "spinlock.h" //
#include "sleeplock.h" // caller should lock.
#include "fs.h" //
#include "file.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"
#define COM1 0x3f8 // address of one of the registers
#define R(reg) ((unsigned int*)(UART0 + 4*(reg)))
static int uart; // is there a uart?
void void
uartinit(void) uartinit(void)
{ {
char *p; // disable interrupts
*R(1) = 0x00;
// Turn off the FIFO // special mode to set baud rate
outb(COM1+2, 0); *R(3) = 0x80;
// 9600 baud, 8 data bits, 1 stop bit, parity off. // LSB for baud rate of 38.4K
outb(COM1+3, 0x80); // Unlock divisor *R(0) = 0x03;
outb(COM1+0, 115200/9600);
outb(COM1+1, 0);
outb(COM1+3, 0x03); // Lock divisor, 8 data bits.
outb(COM1+4, 0);
outb(COM1+1, 0x01); // Enable receive interrupts.
// If status is 0xFF, no serial port. // MSB for baud rate of 38.4K
if(inb(COM1+5) == 0xFF) *R(1) = 0x00;
return;
uart = 1;
// Acknowledge pre-existing interrupt conditions; // leave set-baud mode,
// enable interrupts. // and set word length to 8 bits, no parity.
inb(COM1+2); *R(3) = 0x03;
inb(COM1+0);
ioapicenable(IRQ_COM1, 0);
// Announce that we're here. // reset and enable FIFOs.
for(p="xv6...\n"; *p; p++) *R(2) = 0x07;
uartputc(*p);
} }
void void
uartputc(int c) uartputc(int c)
{ {
int i; *R(0) = c;
if(!uart)
return;
for(i = 0; i < 128 && !(inb(COM1+5) & 0x20); i++)
microdelay(10);
outb(COM1+0, c);
} }
static int static int
uartgetc(void) uartgetc(void)
{ {
if(!uart)
return -1;
if(!(inb(COM1+5) & 0x01))
return -1;
return inb(COM1+0);
} }
void void
uartintr(void) uartintr(void)
{ {
consoleintr(uartgetc);
} }

496
vm.c
View file

@ -1,230 +1,162 @@
#include "param.h" #include "param.h"
#include "types.h" #include "types.h"
#include "defs.h"
#include "x86.h"
#include "msr.h"
#include "memlayout.h" #include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h" #include "elf.h"
#include "traps.h" #include "riscv.h"
#include "defs.h"
extern char data[]; // defined by kernel.ld /*
void sysentry(void); * the kernel's page table.
*/
pagetable_t kernel_pagetable;
static pde_t *kpml4; // kernel address space, used by scheduler and bootup extern char etext[]; // kernel.ld sets this to end of kernel code.
// Bootstrap GDT. Used by boot.S but defined in C extern char trampstart[]; // trampoline.S
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
struct segdesc bootgdt[NSEGS] = {
[0] = SEGDESC(0, 0, 0), // null
[1] = SEGDESC(0, 0xfffff, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // 32-bit kernel code
[2] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_L|SEG_G), // 64-bit kernel code
[3] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // kernel data
// The order of the user data and user code segments is
// important for syscall instructions. See initseg.
[6] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(3)|SEG_P|SEG_D|SEG_G), // 64-bit user data
[7] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(3)|SEG_P|SEG_L|SEG_G), // 64-bit user code
};
/*
// Set up CPU's kernel segment descriptors. * create a direct-map page table for the kernel and
// Run once on entry on each CPU. * turn on paging. called early, in supervisor mode.
* the page allocator is already initialized.
*/
void void
seginit(void) kvminit()
{ {
struct cpu *c; kernel_pagetable = (pagetable_t) kalloc();
struct desctr dtr; memset(kernel_pagetable, 0, PGSIZE);
c = getmycpu(); // uart registers
mappages(kernel_pagetable, UART0, PGSIZE,
UART0, PTE_R | PTE_W);
memmove(c->gdt, bootgdt, sizeof bootgdt); // map kernel text executable and read-only.
dtr.limit = sizeof(c->gdt)-1; mappages(kernel_pagetable, KERNBASE, (uint64)etext-KERNBASE,
dtr.base = (uint64) c->gdt; KERNBASE, PTE_R | PTE_X);
lgdt((void *)&dtr.limit);
// When executing a syscall instruction the CPU sets the SS selector // map kernel data and the physical RAM we'll make use of.
// to (star >> 32) + 8 and the CS selector to (star >> 32). mappages(kernel_pagetable, (uint64)etext, PHYSTOP-(uint64)etext,
// When executing a sysret instruction the CPU sets the SS selector (uint64)etext, PTE_R | PTE_W);
// to (star >> 48) + 8 and the CS selector to (star >> 48) + 16.
uint64 star = ((((uint64)SEG_UCODE|0x3)- 16)<<48)|((uint64)(SEG_KCODE)<<32);
writemsr(MSR_STAR, star);
writemsr(MSR_LSTAR, (uint64)&sysentry);
writemsr(MSR_SFMASK, FL_TF | FL_IF);
// Initialize cpu-local storage so that each core can easily // map the trampoline for trap entry/exit to
// find its struct cpu using %gs. // the highest virtual address in the kernel.
writegs(SEG_KDATA); mappages(kernel_pagetable, TRAMPOLINE, PGSIZE,
writemsr(MSR_GS_BASE, (uint64)c); (uint64)trampstart, PTE_R | PTE_X);
writemsr(MSR_GS_KERNBASE, (uint64)c);
c->cpu = c; kvmswitch();
} }
// Return the address of the PTE in page table pgdir // Switch h/w page table register to the kernel's page table,
// and enable paging.
void
kvmswitch(void)
{
w_satp(MAKE_SATP(kernel_pagetable));
}
// Return the address of the PTE in page table pagetable
// that corresponds to virtual address va. If alloc!=0, // that corresponds to virtual address va. If alloc!=0,
// create any required page table pages. // create any required page table pages.
//
// The risc-v Sv39 scheme has three levels of page table
// pages. A page table page contains 512 64-bit PTEs.
// A 64-bit virtual address is split into five fields:
// 39..63 -- must be zero.
// 30..38 -- 9 bits of level-2 index.
// 21..39 -- 9 bits of level-1 index.
// 12..20 -- 9 bits of level-0 index.
// 0..12 -- 12 bits of byte offset within the page.
static pte_t * static pte_t *
walkpgdir(pde_t *pml4, const void *va, int alloc) walk(pagetable_t pagetable, const void *va, int alloc)
{ {
pde_t *pgdir = pml4; if((uint64)va >= MAXVA)
pde_t *pde; panic("walk");
int level;
for (level = L_PML4; level > 0; level--) { for(int level = 2; level > 0; level--) {
pde = &pgdir[PX(level, va)]; pte_t *pte = &pagetable[PX(level, va)];
if(*pde & PTE_P) if(*pte & PTE_V) {
pgdir = (pte_t*)P2V(PTE_ADDR(*pde)); pagetable = (pagetable_t)PTE2PA(*pte);
else { } else {
if(!alloc || (pgdir = (pde_t*)kalloc()) == 0) if(!alloc || (pagetable = (pde_t*)kalloc()) == 0)
return 0; return 0;
memset(pgdir, 0, PGSIZE); memset(pagetable, 0, PGSIZE);
*pde = V2P(pgdir) | PTE_P | PTE_W | PTE_U; *pte = PA2PTE(pagetable) | PTE_V;
} }
} }
return &pgdir[PX(level, va)]; return &pagetable[PX(0, va)];
} }
// Create PTEs for virtual addresses starting at va that refer to // Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not // physical addresses starting at pa. va and size might not
// be page-aligned. // be page-aligned.
static int void
mappages(pde_t *pgdir, void *va, uint64 size, uint64 pa, int perm) mappages(pagetable_t pagetable, uint64 va, uint64 size, uint64 pa, int perm)
{ {
char *a, *last; char *a, *last;
pte_t *pte; pte_t *pte;
a = (char*)PGROUNDDOWN((uint64)va); a = (char*)PGROUNDDOWN(va);
last = (char*)PGROUNDDOWN(((uint64)va) + size - 1); last = (char*)PGROUNDDOWN(va + size - 1);
for(;;){ for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0) if((pte = walk(pagetable, a, 1)) == 0)
return -1; panic("mappages: walk");
if(*pte & PTE_P) if(*pte & PTE_V)
panic("remap"); panic("remap");
*pte = pa | perm | PTE_P; *pte = PA2PTE(pa) | perm | PTE_V;
if(a == last) if(a == last)
break; break;
a += PGSIZE; a += PGSIZE;
pa += PGSIZE; pa += PGSIZE;
} }
return 0;
} }
// There is one page table per process, plus one that's used when // Remove mappings from a page table. The mappings in
// a CPU is not running any process (kpml4). The kernel uses the // the given range must exist. Optionally free the
// current process's page table during system calls and interrupts; // physical memory.
// page protection bits prevent user code from using the kernel's void
// mappings. unmappages(pagetable_t pagetable, uint64 va, uint64 size, int do_free)
//
// setupkvm() and exec() set up every page table like this:
//
// 0..KERNBASE: user memory (text+data+stack+heap), mapped to
// phys memory allocated by the kernel
// KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
// KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
// for the kernel's instructions and r/o data
// data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
// rw data + free physical memory
// 0xfe000000..0: mapped direct (devices such as ioapic)
//
// The kernel allocates physical memory for its heap and for user memory
// between V2P(end) and the end of physical memory (PHYSTOP)
// (directly addressable from end..P2V(PHYSTOP)).
// This table defines the kernel's mappings, which are present in
// every process's page table.
static struct kmap {
void *virt;
uint64 phys_start;
uint64 phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
{ (void*)P2V(DEVSPACE), DEVSPACE, DEVSPACETOP, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{ {
pde_t *pml4; char *a, *last;
struct kmap *k; pte_t *pte;
uint64 pa;
if((pml4 = (pde_t*)kalloc()) == 0) a = (char*)PGROUNDDOWN(va);
return 0; last = (char*)PGROUNDDOWN(va + size - 1);
memset(pml4, 0, PGSIZE); for(;;){
if (PHYSTOP > DEVSPACE) if((pte = walk(pagetable, a, 0)) == 0)
panic("PHYSTOP too high"); panic("unmappages: walk");
for(k = kmap; k < &kmap[NELEM(kmap)]; k++) { if((*pte & PTE_V) == 0)
if(mappages(pml4, k->virt, k->phys_end - k->phys_start, panic("unmappages: not mapped");
(uint)k->phys_start, k->perm) < 0) { if(PTE_FLAGS(*pte) == PTE_V)
freevm(pml4, 0); panic("unmappages: not a leaf");
return 0; if(do_free){
pa = PTE2PA(*pte);
kfree((void*)pa);
} }
*pte = 0;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
} }
return pml4;
} }
// Allocate one page table for the machine for the kernel address // create an empty user page table.
// space for scheduler processes. pagetable_t
void uvmcreate()
kvmalloc(void)
{ {
kpml4 = setupkvm(); pagetable_t pagetable;
switchkvm(); pagetable = (pagetable_t) kalloc();
if(pagetable == 0)
panic("uvmcreate: out of memory");
memset(pagetable, 0, PGSIZE);
return pagetable;
} }
// Switch h/w page table register to the kernel-only page table, // Load the user initcode into address 0 of pagetable,
// for when no process is running. // for the very first process.
void
switchkvm(void)
{
lcr3(V2P(kpml4)); // switch to the kernel page table
}
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
struct desctr dtr;
struct cpu *c;
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
panic("switchuvm: no kstack");
if(p->pgdir == 0)
panic("switchuvm: no pgdir");
pushcli();
c = mycpu();
uint64 base = (uint64) &(c->ts);
c->gdt[SEG_TSS>>3] = SEGDESC(base, (sizeof(c->ts)-1), SEG_P|SEG_TSS64A);
c->gdt[(SEG_TSS>>3)+1] = SEGDESCHI(base);
c->ts.rsp[0] = (uint64) p->kstack + KSTACKSIZE;
c->ts.iomba = (ushort) 0xFFFF;
dtr.limit = sizeof(c->gdt) - 1;
dtr.base = (uint64)c->gdt;
lgdt((void *)&dtr.limit);
ltr(SEG_TSS);
lcr3(V2P(p->pgdir)); // switch to process's address space
popcli();
}
// Load the initcode into address 0 of pgdir.
// sz must be less than a page. // sz must be less than a page.
void void
inituvm(pde_t *pgdir, char *init, uint sz) uvminit(pagetable_t pagetable, char *src, uint sz)
{ {
char *mem; char *mem;
@ -232,63 +164,8 @@ inituvm(pde_t *pgdir, char *init, uint sz)
panic("inituvm: more than a page"); panic("inituvm: more than a page");
mem = kalloc(); mem = kalloc();
memset(mem, 0, PGSIZE); memset(mem, 0, PGSIZE);
mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U); mappages(pagetable, 0, PGSIZE, (uint64)mem, PTE_W|PTE_R|PTE_X|PTE_U);
memmove(mem, init, sz); memmove(mem, src, sz);
}
// Load a program segment into pgdir. addr must be page-aligned
// and the pages from addr to addr+sz must already be mapped.
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
uint i, n;
uint64 pa;
pte_t *pte;
if((uint64) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)
return -1;
}
return 0;
}
// Allocate page tables and physical memory to grow process from oldsz to
// newsz, which need not be page aligned. Returns new size or 0 on error.
int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
uint64 a;
if(newsz >= KERNBASE)
return 0;
if(newsz < oldsz)
return oldsz;
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
}
}
return newsz;
} }
// Deallocate user pages to bring the process size from oldsz to // Deallocate user pages to bring the process size from oldsz to
@ -296,153 +173,66 @@ allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
// need to be less than oldsz. oldsz can be larger than the actual // need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size. // process size. Returns the new process size.
int int
deallocuvm(pde_t *pml4, uint64 oldsz, uint64 newsz) uvmdealloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz)
{ {
pte_t *pte;
uint64 a, pa;
if(newsz >= oldsz) if(newsz >= oldsz)
return oldsz; return oldsz;
unmappages(pagetable, newsz, oldsz - newsz, 1);
a = PGROUNDUP(newsz);
for(; a < oldsz; a += PGSIZE){
pte = walkpgdir(pml4, (char*)a, 0);
if(!pte)
continue;
else if((*pte & PTE_P) != 0){
pa = PTE_ADDR(*pte);
if(pa == 0)
panic("kfree");
char *v = P2V(pa);
kfree(v);
*pte = 0;
}
}
return newsz; return newsz;
} }
// Recursively free a page table // Recursively free page table pages.
void // All leaf mappings must already have been removed.
freelevel(pde_t *pgtab, int level) { static void
int i; freewalk(pagetable_t pagetable)
pde_t *pd; {
// there are 2^9 = 512 PTEs in a page table.
if (level > 0) { for(int i = 0; i < 512; i++){
for(i = 0; i < NPDENTRIES; i++) { pte_t pte = pagetable[i];
if(pgtab[i] & PTE_P){ if((pte & PTE_V) && (pte & (PTE_R|PTE_W|PTE_X)) == 0){
pd = (pde_t*)P2V(PTE_ADDR(pgtab[i])); // this PTE points to a lower-level page table.
freelevel(pd, level-1); uint64 child = PTE2PA(pte);
freewalk((pagetable_t)child);
pagetable[i] = 0;
} else if(pte & PTE_V){
// XXX trampoline pages...
panic("freewalk: leaf");
} }
} }
} kfree((void*)pagetable);
kfree((char*)pgtab);
} }
// Free all the physical memory pages // Free user memory pages,
// in the user part and page table // then free page table pages.
void void
freevm(pde_t *pml4, uint64 sz) uvmfree(pagetable_t pagetable, uint64 sz)
{ {
if(pml4 == 0) unmappages(pagetable, 0, sz, 1);
panic("freevm: no pgdir"); freewalk(pagetable);
deallocuvm(pml4, sz, 0);
freelevel(pml4, L_PML4);
} }
// Clear PTE_U on a page. Used to create an inaccessible // Given a parent process's page table, copy
// page beneath the user stack. // its memory into a child's page table.
// Copies both the page table and the
// physical memory.
void void
clearpteu(pde_t *pgdir, char *uva) uvmcopy(pagetable_t old, pagetable_t new, uint64 sz)
{ {
pte_t *pte; pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if(pte == 0)
panic("clearpteu");
*pte &= ~PTE_U;
}
// Given a parent process's page table, create a copy
// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
uint64 pa, i; uint64 pa, i;
uint flags; uint flags;
char *mem; char *mem;
if((d = setupkvm()) == 0)
return 0;
for(i = 0; i < sz; i += PGSIZE){ for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0) if((pte = walk(old, (void *) i, 0)) == 0)
panic("copyuvm: pte should exist"); panic("copyuvm: pte should exist");
if(!(*pte & PTE_P)) if((*pte & PTE_V) == 0)
panic("copyuvm: page not present"); panic("copyuvm: page not present");
pa = PTE_ADDR(*pte); pa = PTE2PA(*pte);
flags = PTE_FLAGS(*pte); flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0) if((mem = kalloc()) == 0)
goto bad; panic("uvmcopy: kalloc failed");
memmove(mem, (char*)P2V(pa), PGSIZE); memmove(mem, (char*)pa, PGSIZE);
if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) { mappages(new, i, PGSIZE, (uint64)mem, flags);
kfree(mem);
goto bad;
} }
}
return d;
bad:
freevm(d, sz);
return 0;
} }
//PAGEBREAK!
// Map user virtual address to kernel address.
char*
uva2ka(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if((*pte & PTE_P) == 0)
return 0;
if((*pte & PTE_U) == 0)
return 0;
return (char*)P2V(PTE_ADDR(*pte));
}
// Copy len bytes from p to user address va in page table pgdir.
// Most useful when pgdir is not the current page table.
// uva2ka ensures this only works for PTE_U pages.
int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
uint64 n, va0;
buf = (char*)p;
while(len > 0){
va0 = (uint)PGROUNDDOWN(va);
pa0 = uva2ka(pgdir, (char*)va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (va - va0);
if(n > len)
n = len;
memmove(pa0 + (va - va0), buf, n);
len -= n;
buf += n;
va = va0 + PGSIZE;
}
return 0;
}
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.

198
x86.h
View file

@ -1,198 +0,0 @@
// Routines to let C code use special x86 instructions.
#ifndef __ASSEMBLER__
static inline uchar
inb(ushort port)
{
uchar data;
asm volatile("in %1,%0" : "=a" (data) : "d" (port));
return data;
}
static inline void
insl(int port, void *addr, int cnt)
{
asm volatile("cld; rep insl" :
"=D" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"memory", "cc");
}
static inline void
outb(ushort port, uchar data)
{
asm volatile("out %0,%1" : : "a" (data), "d" (port));
}
static inline void
outw(ushort port, ushort data)
{
asm volatile("out %0,%1" : : "a" (data), "d" (port));
}
static inline void
outsl(int port, const void *addr, int cnt)
{
asm volatile("cld; rep outsl" :
"=S" (addr), "=c" (cnt) :
"d" (port), "0" (addr), "1" (cnt) :
"cc");
}
static inline void
stosb(void *addr, int data, int cnt)
{
asm volatile("cld; rep stosb" :
"=D" (addr), "=c" (cnt) :
"0" (addr), "1" (cnt), "a" (data) :
"memory", "cc");
}
static inline void
stosl(void *addr, int data, int cnt)
{
asm volatile("cld; rep stosl" :
"=D" (addr), "=c" (cnt) :
"0" (addr), "1" (cnt), "a" (data) :
"memory", "cc");
}
static inline void
lgdt(void *p)
{
asm volatile("lgdt (%0)" : : "r" (p) : "memory");
}
static inline void
lidt(void *p)
{
asm volatile("lidt (%0)" : : "r" (p) : "memory");
}
static inline void
ltr(ushort sel)
{
asm volatile("ltr %0" : : "r" (sel));
}
static inline uint64
readeflags(void)
{
uint64 eflags;
asm volatile("pushf; pop %0" : "=r" (eflags));
return eflags;
}
static inline void
loadgs(ushort v)
{
asm volatile("movw %0, %%gs" : : "r" (v));
}
static inline void
cli(void)
{
asm volatile("cli");
}
static inline void
sti(void)
{
asm volatile("sti");
}
static inline uint
xchg(volatile uint *addr, uint newval)
{
uint result;
// The + in "+m" denotes a read-modify-write operand.
asm volatile("lock; xchgl %0, %1" :
"+m" (*addr), "=a" (result) :
"1" (newval) :
"cc");
return result;
}
static inline uint
rcr2(void)
{
uint64 val;
asm volatile("mov %%cr2,%0" : "=r" (val));
return val;
}
static inline void
lcr3(uint64 val)
{
asm volatile("mov %0,%%cr3" : : "r" (val));
}
static inline void
writegs(uint16 v)
{
__asm volatile("movw %0, %%gs" : : "r" (v));
}
//PAGEBREAK: 36
// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
struct trapframe {
uint64 rax;
uint64 rbx;
uint64 rcx;
uint64 rdx;
uint64 rbp;
uint64 rsi;
uint64 rdi;
uint64 r8;
uint64 r9;
uint64 r10;
uint64 r11;
uint64 r12;
uint64 r13;
uint64 r14;
uint64 r15;
uint64 trapno;
uint64 err;
uint64 rip;
uint16 cs;
uint16 padding[3];
uint64 rflags;
uint64 rsp;
uint64 ss;
}__attribute__((packed));
struct sysframe {
// arguments
uint64 rdi;
uint64 rsi;
uint64 rdx;
uint64 r10;
uint64 r8;
uint64 r9;
// callee-saved registers
uint64 r15;
uint64 r14;
uint64 r13;
uint64 r12;
uint64 rbx;
uint64 rbp;
// return value
uint64 rax;
// syscall registers
uint64 r11; // eflags
uint64 rcx; // rip
uint64 rsp;
}__attribute__((packed));
#endif
#define TF_CS 144 // offset in trapframe for saved cs