Merge branch 'riscv' of g.csail.mit.edu:xv6-dev into riscv
This commit is contained in:
commit
8d30e21b59
|
@ -133,9 +133,9 @@ kvmpa(uint64 va)
|
|||
|
||||
pte = walk(kernel_pagetable, va, 0);
|
||||
if(pte == 0)
|
||||
panic("kernelpa");
|
||||
panic("kvmpa");
|
||||
if((*pte & PTE_V) == 0)
|
||||
panic("kernelpa");
|
||||
panic("kvmpa");
|
||||
pa = PTE2PA(*pte);
|
||||
return pa+off;
|
||||
}
|
||||
|
@ -343,7 +343,7 @@ uvmclear(pagetable_t pagetable, uint64 va)
|
|||
|
||||
pte = walk(pagetable, va, 0);
|
||||
if(pte == 0)
|
||||
panic("clearpteu");
|
||||
panic("uvmclear");
|
||||
*pte &= ~PTE_U;
|
||||
}
|
||||
|
||||
|
|
196
labs/syscall.html
Normal file
196
labs/syscall.html
Normal file
|
@ -0,0 +1,196 @@
|
|||
<html>
|
||||
<head>
|
||||
<title>Lab: system calls</title>
|
||||
<link rel="stylesheet" href="homework.css" type="text/css" />
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<h1>Lab: system calls</h1>
|
||||
|
||||
This lab makes you familiar with the implementation of system calls.
|
||||
In particular, you will implement a new system call: <tt>alarm</tt>.
|
||||
|
||||
|
||||
<h2>Warmup: system call tracing</h2>
|
||||
|
||||
<p>In this exercise you will modify the xv6 kernel to print out a line
|
||||
for each system call invocation. It is enough to print the name of the
|
||||
system call and the return value; you don't need to print the system
|
||||
call arguments.
|
||||
|
||||
<p>
|
||||
When you're done, you should see output like this when booting
|
||||
xv6:
|
||||
|
||||
<pre>
|
||||
...
|
||||
fork -> 2
|
||||
exec -> 0
|
||||
open -> 3
|
||||
close -> 0
|
||||
$write -> 1
|
||||
write -> 1
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
That's init forking and execing sh, sh making sure only two file descriptors are
|
||||
open, and sh writing the $ prompt. (Note: the output of the shell and the
|
||||
system call trace are intermixed, because the shell uses the write syscall to
|
||||
print its output.)
|
||||
|
||||
<p> Hint: modify the syscall() function in kernel/syscall.c.
|
||||
|
||||
<p>Run the programs you wrote in the lab and inspect the system call
|
||||
trace. Are there many system calls? Which systems calls correspond
|
||||
to code in the applications you wrote above?
|
||||
|
||||
<p>Optional: print the system call arguments.
|
||||
|
||||
<h2>alarm</h2>
|
||||
|
||||
<p>
|
||||
In this exercise you'll add a feature to xv6 that periodically alerts
|
||||
a process as it uses CPU time. This might be useful for compute-bound
|
||||
processes that want to limit how much CPU time they chew up, or for
|
||||
processes that want to compute but also want to take some periodic
|
||||
action. More generally, you'll be implementing a primitive form of
|
||||
user-level interrupt/fault handlers; you could use something similar
|
||||
to handle page faults in the application, for example.
|
||||
|
||||
<p>
|
||||
You should add a new <tt>alarm(interval, handler)</tt> system call.
|
||||
If an application calls <tt>alarm(n, fn)</tt>, then after every
|
||||
<tt>n</tt> "ticks" of CPU time that the program consumes, the kernel
|
||||
will cause application function
|
||||
<tt>fn</tt> to be called. When <tt>fn</tt> returns, the application
|
||||
will resume where it left off. A tick is a fairly arbitrary unit of
|
||||
time in xv6, determined by how often a hardware timer generates
|
||||
interrupts.
|
||||
|
||||
<p>
|
||||
You should put the following example program in <tt>user/alarmtest.c</tt>:
|
||||
|
||||
<pre>
|
||||
#include "kernel/param.h"
|
||||
#include "kernel/types.h"
|
||||
#include "kernel/stat.h"
|
||||
#include "user/user.h"
|
||||
|
||||
void periodic();
|
||||
|
||||
int
|
||||
main(int argc, char *argv[])
|
||||
{
|
||||
int i;
|
||||
printf(1, "alarmtest starting\n");
|
||||
alarm(10, periodic);
|
||||
for(i = 0; i < 25*500000; i++){
|
||||
if((i % 250000) == 0)
|
||||
write(2, ".", 1);
|
||||
}
|
||||
exit();
|
||||
}
|
||||
|
||||
void
|
||||
periodic()
|
||||
{
|
||||
printf(1, "alarm!\n");
|
||||
}
|
||||
</pre>
|
||||
|
||||
The program calls <tt>alarm(10, periodic)</tt> to ask the kernel to
|
||||
force a call to <tt>periodic()</tt> every 10 ticks, and then spins for
|
||||
a while.
|
||||
After you have implemented the <tt>alarm()</tt> system call in the kernel,
|
||||
<tt>alarmtest</tt> should produce output like this:
|
||||
|
||||
<pre>
|
||||
$ alarmtest
|
||||
alarmtest starting
|
||||
.....alarm!
|
||||
....alarm!
|
||||
.....alarm!
|
||||
......alarm!
|
||||
.....alarm!
|
||||
....alarm!
|
||||
....alarm!
|
||||
......alarm!
|
||||
.....alarm!
|
||||
...alarm!
|
||||
...$
|
||||
</pre>
|
||||
<p>
|
||||
|
||||
<p>
|
||||
(If you only see one "alarm!", try increasing the number of iterations in
|
||||
<tt>alarmtest.c</tt> by 10x.)
|
||||
|
||||
Here are some hints:
|
||||
<ul>
|
||||
|
||||
<li>You'll need to modify the Makefile to cause <tt>alarmtest.c</tt>
|
||||
to be compiled as an xv6 user program.
|
||||
|
||||
<li>The right declaration to put in <tt>user/user.h</tt> is:
|
||||
<pre>
|
||||
int alarm(int ticks, void (*handler)());
|
||||
</pre>
|
||||
|
||||
<li>Update <tt>kernel/syscall.h</tt> and <tt>user/usys.S</tt> to
|
||||
allow <tt>alarmtest</tt> to invoke the alarm system call.
|
||||
|
||||
<li>Your <tt>sys_alarm()</tt> should store the alarm interval and the
|
||||
pointer to the handler function in new fields in the <tt>proc</tt>
|
||||
structure; see <tt>kernel/proc.h</tt>.
|
||||
|
||||
<li>
|
||||
You'll need to keep track of how many ticks have passed since
|
||||
the last call
|
||||
(or are left until the next call) to a process's alarm handler;
|
||||
you'll need a new field in <tt>struct proc</tt> for this too.
|
||||
You can initialize <tt>proc</tt> fields in <tt>allocproc()</tt>
|
||||
in <tt>proc.c</tt>.
|
||||
|
||||
<li>
|
||||
Every tick, the hardware clock forces an interrupt, which
|
||||
is handled in <tt>usertrap()</tt>; you should add some code here.
|
||||
|
||||
<li>
|
||||
You only want to manipulate a process's alarm ticks if there's a
|
||||
a timer interrupt; you want something like
|
||||
<pre>
|
||||
if(which_dev == 2) ..
|
||||
</pre>
|
||||
|
||||
<p>
|
||||
In your usertrap, when a process's alarm interval expires,
|
||||
you'll want to cause it to execute its handler. How can you do that?
|
||||
|
||||
<li>
|
||||
You need to arrange things so that, when the handler returns,
|
||||
the process resumes executing where it left off. How can you do that?
|
||||
|
||||
<li>
|
||||
You can see the assembly code for the alarmtest program in alarmtest.asm.
|
||||
|
||||
<li>
|
||||
It will be easier to look at traps with gdb if you tell qemu to use
|
||||
only one CPU, which you can do by running
|
||||
<pre>
|
||||
make CPUS=1 qemu
|
||||
</pre>
|
||||
|
||||
<li>
|
||||
It's OK if your solution doesn't save the caller-saved user registers
|
||||
when calling the handler.
|
||||
|
||||
<ul>
|
||||
|
||||
<p>
|
||||
Optional challenges: 1) Save and restore the caller-saved user registers around the
|
||||
call to handler. 2) Prevent re-entrant calls to the handler -- if a handler
|
||||
hasn't returned yet, don't call it again. 3) Assuming your code doesn't
|
||||
check that <tt>tf->esp</tt> is valid, implement a security attack on the
|
||||
kernel that exploits your alarm handler calling code.
|
||||
|
||||
|
|
@ -109,7 +109,7 @@ initial file system. You just ran one of them: <tt>ls</tt>.
|
|||
$ make qemu
|
||||
...
|
||||
init: starting sh
|
||||
$ sleep 5
|
||||
$ sleep 10
|
||||
(waits for a little while)
|
||||
$
|
||||
</pre>
|
||||
|
@ -178,16 +178,60 @@ initial file system. You just ran one of them: <tt>ls</tt>.
|
|||
<li>Don't recurse into "." and "..".
|
||||
</ul>
|
||||
|
||||
<p>Optional: support regular expressions in name matching. Grep has some
|
||||
primitive support for regular expressions.
|
||||
|
||||
<h2>xargs</h2>
|
||||
|
||||
<p>Write a simple version of the UNIX xargs program: read lines from
|
||||
standard in and run a command for each line, supplying the line as
|
||||
arguments to the command. The following example illustrates xarg's
|
||||
behavior:
|
||||
<pre>
|
||||
$ xargs echo bye
|
||||
hello too
|
||||
bye hello too
|
||||
<ctrl-d>
|
||||
$
|
||||
</pre>
|
||||
Note that the command here is "echo bye" and the additional
|
||||
arguments are "hello too", making the command "echo bye hello too",
|
||||
which outputs "bye hello too".
|
||||
|
||||
<p>xargs and find combine well:
|
||||
<pre>
|
||||
find . b | xargs grep hello
|
||||
</pre>
|
||||
will run "grep hello" on each file named b in the directories below ".".
|
||||
|
||||
<p>Some hints:
|
||||
<ul>
|
||||
<li>Use <tt>fork</tt> and <tt>exec</tt> system call to invoke the
|
||||
command on each line of input. Use <tt>wait</tt> in the parent
|
||||
to wait for the child to complete running the command.
|
||||
<li>Read from stdin a character at the time until the newline
|
||||
character ('\n').
|
||||
<li>kernel/param.h declares MAXARG, which may be useful if you need
|
||||
to declare an argv.
|
||||
</ul>
|
||||
|
||||
<h2>Optional: modify the shell</h2>
|
||||
|
||||
<p>Modify the shell to support wait.
|
||||
|
||||
<p>Modify the shell to support lists of commands, separated by ";"
|
||||
There are endless ways in which the shell could be extended. Here are
|
||||
some suggestions:
|
||||
|
||||
<p>Modify the shell to support sub-shells by implementing "(" and ")"
|
||||
|
||||
<p>Modify the shell to allow users to edit the command line
|
||||
<ul>
|
||||
|
||||
<li>Modify the shell to support wait.
|
||||
|
||||
<li>Modify the shell to support lists of commands, separated by ";"
|
||||
|
||||
<li>Modify the shell to support sub-shells by implementing "(" and ")"
|
||||
|
||||
<li>Modify the shell to allow users to edit the command line
|
||||
|
||||
</ul>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
|
Loading…
Reference in a new issue