Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.

The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.

A summary of the changes is as follows:

- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files.  And, we don't
care anymore about booting.

- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!

- Update gdb.tmpl to be for i386 or x86-64

- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
  (32-bit)

- Update elfhdr to be 64 bit

- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt.  The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)

- exec.c: fix passing argv (64-bit now instead of 32-bit).

- initcode.c: use syscall instead of int.

- kernel.ld: load kernel very high, in top terabyte.  64 bits is a lot of
address space!

- proc.c: initial return is through new syscall path instead of trapret.

- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.

- swtch: simplify for x86-64 calling conventions.

- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.

- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.

- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.

- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).

- types.h: add uint64, and change pde_t to uint64

- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit

- vectors: update to make them 64 bits

- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).

- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps.  simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.

TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
This commit is contained in:
Frans Kaashoek 2018-09-23 08:24:42 -04:00
parent b818915f79
commit ab0db651af
39 changed files with 1039 additions and 762 deletions

View file

@ -1,27 +0,0 @@
set $lastcs = -1
define hook-stop
# There doesn't seem to be a good way to detect if we're in 16- or
# 32-bit mode, but in 32-bit mode we always run with CS == 8 in the
# kernel and CS == 35 in user space
if $cs == 8 || $cs == 35
if $lastcs != 8 && $lastcs != 35
set architecture i386
end
x/i $pc
else
if $lastcs == -1 || $lastcs == 8 || $lastcs == 35
set architecture i8086
end
# Translate the segment:offset into a physical address
printf "[%4x:%4x] ", $cs, $eip
x/i $cs*16+$eip
end
set $lastcs = $cs
end
echo + target remote localhost:1234\n
target remote localhost:1234
echo + symbol-file kernel\n
symbol-file kernel

5
.gdbinit.tmpl-i386 Normal file
View file

@ -0,0 +1,5 @@
python
gdb.execute("target remote localhost:26000")
gdb.execute("set architecture i386")
gdb.execute("symbol-file kernel")
gdb.execute("break *0x7c00")

18
.gdbinit.tmpl-x64 Normal file
View file

@ -0,0 +1,18 @@
#if you would like to use gdb in 32bit mode, comment out lines 8 and 15, then uncomment
#the lines after. Note this will only work properly until 64bit mode is enabled in entry.S
python
gdb.execute("set architecture i386:x86-64:intel")
gdb.execute("target remote localhost:26000")
gdb.execute("symbol-file kernel")
gdb.execute("break start64")
#gdb.execute("break *0x7c00")
try:
gdb.execute("continue")
except:
pass
gdb.execute("disconnect")
gdb.execute("set architecture i386:x86-64")
#gdb.execute("set architecture i386")
gdb.execute("target remote localhost:26000")
gdb.execute("delete break 1")

View file

@ -51,7 +51,7 @@ TOOLPREFIX := $(shell if i386-jos-elf-objdump -i 2>&1 | grep '^elf32-i386$$' >/d
endif
# If the makefile can't find QEMU, specify its path here
# QEMU = qemu-system-i386
QEMU = qemu-system-x86_64
# Try to infer the correct QEMU
ifndef QEMU
@ -76,11 +76,16 @@ AS = $(TOOLPREFIX)gas
LD = $(TOOLPREFIX)ld
OBJCOPY = $(TOOLPREFIX)objcopy
OBJDUMP = $(TOOLPREFIX)objdump
CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -O2 -Wall -MD -ggdb -m32 -Werror -fno-omit-frame-pointer
XFLAGS = -m64 -mcmodel=large -ggdb
# CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -O2 -Wall -MD -ggdb -Werror -fno-omit-frame-pointer
CFLAGS = -fno-pic -static -fno-builtin -fno-strict-aliasing -Wall -MD -ggdb -Werror -fno-omit-frame-pointer
CFLAGS += -ffreestanding -fno-common -nostdlib $(XFLAGS)
CFLAGS += $(shell $(CC) -fno-stack-protector -E -x c /dev/null >/dev/null 2>&1 && echo -fno-stack-protector)
ASFLAGS = -m32 -gdwarf-2 -Wa,-divide
ASFLAGS = -gdwarf-2 -Wa,-divide $(XFLAGS)
# FreeBSD ld wants ``elf_i386_fbsd''
LDFLAGS += -m $(shell $(LD) -V | grep elf_i386 2>/dev/null | head -n 1)
LDFLAGS += -m $(shell $(LD) -V | grep elf_x86_64 2>/dev/null | head -n 1)
LDFLAGS += -z max-page-size=4096
# Disable PIE when possible (for Ubuntu 16.10 toolchain)
ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]no-pie'),)
@ -90,23 +95,10 @@ ifneq ($(shell $(CC) -dumpspecs 2>/dev/null | grep -e '[^f]nopie'),)
CFLAGS += -fno-pie -nopie
endif
xv6.img: bootblock kernel
dd if=/dev/zero of=xv6.img count=10000
dd if=bootblock of=xv6.img conv=notrunc
dd if=kernel of=xv6.img seek=1 conv=notrunc
xv6memfs.img: bootblock kernelmemfs
dd if=/dev/zero of=xv6memfs.img count=10000
dd if=bootblock of=xv6memfs.img conv=notrunc
dd if=kernelmemfs of=xv6memfs.img seek=1 conv=notrunc
bootblock: bootasm.S bootmain.c
$(CC) $(CFLAGS) -fno-pic -O -nostdinc -I. -c bootmain.c
$(CC) $(CFLAGS) -fno-pic -nostdinc -I. -c bootasm.S
$(LD) $(LDFLAGS) -N -e start -Ttext 0x7C00 -o bootblock.o bootasm.o bootmain.o
$(OBJDUMP) -S bootblock.o > bootblock.asm
$(OBJCOPY) -S -O binary -j .text bootblock.o bootblock
./sign.pl bootblock
kernel: $(OBJS) entry.o entryother initcode kernel.ld
$(LD) $(LDFLAGS) -T kernel.ld -o kernel entry.o $(OBJS) -b binary initcode entryother
$(OBJDUMP) -S kernel > kernel.asm
$(OBJDUMP) -t kernel | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernel.sym
entryother: entryother.S
$(CC) $(CFLAGS) -fno-pic -nostdinc -I. -c entryother.S
@ -120,23 +112,6 @@ initcode: initcode.S
$(OBJCOPY) -S -O binary initcode.out initcode
$(OBJDUMP) -S initcode.o > initcode.asm
kernel: $(OBJS) entry.o entryother initcode kernel.ld
$(LD) $(LDFLAGS) -T kernel.ld -o kernel entry.o $(OBJS) -b binary initcode entryother
$(OBJDUMP) -S kernel > kernel.asm
$(OBJDUMP) -t kernel | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernel.sym
# kernelmemfs is a copy of kernel that maintains the
# disk image in memory instead of writing to a disk.
# This is not so useful for testing persistent storage or
# exploring disk buffering implementations, but it is
# great for testing the kernel on real hardware without
# needing a scratch disk.
MEMFSOBJS = $(filter-out ide.o,$(OBJS)) memide.o
kernelmemfs: $(MEMFSOBJS) entry.o entryother initcode kernel.ld fs.img
$(LD) $(LDFLAGS) -T kernel.ld -o kernelmemfs entry.o $(MEMFSOBJS) -b binary initcode entryother fs.img
$(OBJDUMP) -S kernelmemfs > kernelmemfs.asm
$(OBJDUMP) -t kernelmemfs | sed '1,/SYMBOL TABLE/d; s/ .* / /; /^$$/d' > kernelmemfs.sym
tags: $(OBJS) entryother.S _init
etags *.S *.c
@ -190,8 +165,8 @@ fs.img: mkfs README $(UPROGS)
clean:
rm -f *.tex *.dvi *.idx *.aux *.log *.ind *.ilg \
*.o *.d *.asm *.sym vectors.S bootblock entryother \
initcode initcode.out kernel xv6.img fs.img kernelmemfs \
xv6memfs.img mkfs .gdbinit \
initcode initcode.out kernel fs.img kernelmemfs \
mkfs .gdbinit \
$(UPROGS)
# make a printout
@ -204,12 +179,6 @@ xv6.pdf: $(PRINT)
print: xv6.pdf
# run in emulators
bochs : fs.img xv6.img
if [ ! -e .bochsrc ]; then ln -s dot-bochsrc .bochsrc; fi
bochs -q
# try to generate a unique GDB port
GDBPORT = $(shell expr `id -u` % 5000 + 25000)
# QEMU's gdb stub command line changed in 0.11
@ -219,25 +188,21 @@ QEMUGDB = $(shell if $(QEMU) -help | grep -q '^-gdb'; \
ifndef CPUS
CPUS := 2
endif
QEMUOPTS = -drive file=fs.img,index=1,media=disk,format=raw -drive file=xv6.img,index=0,media=disk,format=raw -smp $(CPUS) -m 512 $(QEMUEXTRA)
qemu: fs.img xv6.img
QEMUOPTS = -kernel kernel -drive file=fs.img,index=1,media=disk,format=raw -smp $(CPUS) -m 512 $(QEMUEXTRA)
qemu: fs.img
$(QEMU) -serial mon:stdio $(QEMUOPTS)
qemu-memfs: xv6memfs.img
$(QEMU) -drive file=xv6memfs.img,index=0,media=disk,format=raw -smp $(CPUS) -m 256
qemu-nox: fs.img xv6.img
qemu-nox: fs.img kernel
$(QEMU) -nographic $(QEMUOPTS)
.gdbinit: .gdbinit.tmpl
.gdbinit: .gdbinit.tmpl-x64
sed "s/localhost:1234/localhost:$(GDBPORT)/" < $^ > $@
qemu-gdb: fs.img xv6.img .gdbinit
qemu-gdb: fs.img kernel .gdbinit
@echo "*** Now run 'gdb'." 1>&2
$(QEMU) -serial mon:stdio $(QEMUOPTS) -S $(QEMUGDB)
$(QEMU) $(QEMUOPTS) -S $(QEMUGDB)
qemu-nox-gdb: fs.img xv6.img .gdbinit
qemu-nox-gdb: fs.img kernel .gdbinit
@echo "*** Now run 'gdb'." 1>&2
$(QEMU) -nographic $(QEMUOPTS) -S $(QEMUGDB)

View file

@ -1,88 +0,0 @@
#include "asm.h"
#include "memlayout.h"
#include "mmu.h"
# Start the first CPU: switch to 32-bit protected mode, jump into C.
# The BIOS loads this code from the first sector of the hard disk into
# memory at physical address 0x7c00 and starts executing in real mode
# with %cs=0 %ip=7c00.
.code16 # Assemble for 16-bit mode
.globl start
start:
cli # BIOS enabled interrupts; disable
# Zero data segment registers DS, ES, and SS.
xorw %ax,%ax # Set %ax to zero
movw %ax,%ds # -> Data Segment
movw %ax,%es # -> Extra Segment
movw %ax,%ss # -> Stack Segment
# Physical address line A20 is tied to zero so that the first PCs
# with 2 MB would run software that assumed 1 MB. Undo that.
seta20.1:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20.1
movb $0xd1,%al # 0xd1 -> port 0x64
outb %al,$0x64
seta20.2:
inb $0x64,%al # Wait for not busy
testb $0x2,%al
jnz seta20.2
movb $0xdf,%al # 0xdf -> port 0x60
outb %al,$0x60
# Switch from real to protected mode. Use a bootstrap GDT that makes
# virtual addresses map directly to physical addresses so that the
# effective memory map doesn't change during the transition.
lgdt gdtdesc
movl %cr0, %eax
orl $CR0_PE, %eax
movl %eax, %cr0
//PAGEBREAK!
# Complete the transition to 32-bit protected mode by using a long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmp $(SEG_KCODE<<3), $start32
.code32 # Tell assembler to generate 32-bit code now.
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<3), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $0, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
# Set up the stack pointer and call into C.
movl $start, %esp
call bootmain
# If bootmain returns (it shouldn't), trigger a Bochs
# breakpoint if running under Bochs, then loop.
movw $0x8a00, %ax # 0x8a00 -> port 0x8a00
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax # 0x8ae0 -> port 0x8a00
outw %ax, %dx
spin:
jmp spin
# Bootstrap GDT
.p2align 2 # force 4 byte alignment
gdt:
SEG_NULLASM # null seg
SEG_ASM(STA_X|STA_R, 0x0, 0xffffffff) # code seg
SEG_ASM(STA_W, 0x0, 0xffffffff) # data seg
gdtdesc:
.word (gdtdesc - gdt - 1) # sizeof(gdt) - 1
.long gdt # address gdt

View file

@ -2,6 +2,8 @@
// Input is from the keyboard or serial port.
// Output is written to the screen and serial port.
#include <stdarg.h>
#include "types.h"
#include "defs.h"
#include "param.h"
@ -24,10 +26,11 @@ static struct {
int locking;
} cons;
static char digits[] = "0123456789abcdef";
static void
printint(int xx, int base, int sign)
{
static char digits[] = "0123456789abcdef";
char buf[16];
int i;
uint x;
@ -48,14 +51,25 @@ printint(int xx, int base, int sign)
while(--i >= 0)
consputc(buf[i]);
}
static void
printptr(uint64 x) {
int i;
consputc('0');
consputc('x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
consputc(digits[x >> (sizeof(uint64) * 8 - 4)]);
}
//PAGEBREAK: 50
// Print to the console. only understands %d, %x, %p, %s.
void
cprintf(char *fmt, ...)
{
va_list ap;
int i, c, locking;
uint *argp;
char *s;
locking = cons.locking;
@ -65,7 +79,7 @@ cprintf(char *fmt, ...)
if (fmt == 0)
panic("null fmt");
argp = (uint*)(void*)(&fmt + 1);
va_start(ap, fmt);
for(i = 0; (c = fmt[i] & 0xff) != 0; i++){
if(c != '%'){
consputc(c);
@ -76,14 +90,16 @@ cprintf(char *fmt, ...)
break;
switch(c){
case 'd':
printint(*argp++, 10, 1);
printint(va_arg(ap, int), 10, 1);
break;
case 'x':
printint(va_arg(ap, int), 16, 1);
break;
case 'p':
printint(*argp++, 16, 0);
printptr(va_arg(ap, uint64));
break;
case 's':
if((s = (char*)*argp++) == 0)
if((s = va_arg(ap, char*)) == 0)
s = "(null)";
for(; *s; s++)
consputc(*s);
@ -107,7 +123,7 @@ void
panic(char *s)
{
int i;
uint pcs[10];
uint64 pcs[10];
cli();
cons.locking = 0;

12
defs.h
View file

@ -126,7 +126,7 @@ void swtch(struct context**, struct context*);
// spinlock.c
void acquire(struct spinlock*);
void getcallerpcs(void*, uint*);
void getcallerpcs(void*, uint64*);
int holding(struct spinlock*);
void initlock(struct spinlock*, char*);
void release(struct spinlock*);
@ -152,8 +152,10 @@ char* strncpy(char*, const char*, int);
int argint(int, int*);
int argptr(int, char**, int);
int argstr(int, char**);
int fetchint(uint, int*);
int fetchstr(uint, char**);
int argaddr(int, uint64 *);
int fetchint(uint64, int*);
int fetchstr(uint64, char**);
int fetchaddr(uint64, uint64*);
void syscall(void);
// timer.c
@ -176,8 +178,8 @@ void kvmalloc(void);
pde_t* setupkvm(void);
char* uva2ka(pde_t*, char*);
int allocuvm(pde_t*, uint, uint);
int deallocuvm(pde_t*, uint, uint);
void freevm(pde_t*);
int deallocuvm(pde_t*, uint64, uint64);
void freevm(pde_t*, uint64);
void inituvm(pde_t*, char*, uint);
int loaduvm(pde_t*, char*, struct inode*, uint, uint);
pde_t* copyuvm(pde_t*, uint);

22
elf.h
View file

@ -9,9 +9,9 @@ struct elfhdr {
ushort type;
ushort machine;
uint version;
uint entry;
uint phoff;
uint shoff;
uint64 entry;
uint64 phoff;
uint64 shoff;
uint flags;
ushort ehsize;
ushort phentsize;
@ -23,14 +23,14 @@ struct elfhdr {
// Program section header
struct proghdr {
uint type;
uint off;
uint vaddr;
uint paddr;
uint filesz;
uint memsz;
uint flags;
uint align;
uint32 type;
uint32 flags;
uint64 off;
uint64 vaddr;
uint64 paddr;
uint64 filesz;
uint64 memsz;
uint64 align;
};
// Values for Proghdr type

261
entry.S
View file

@ -1,68 +1,223 @@
# The xv6 kernel starts executing in this file. This file is linked with
# the kernel C code, so it can refer to kernel symbols such as main().
# The boot block (bootasm.S and bootmain.c) jumps to entry below.
# Multiboot header, for multiboot boot loaders like GNU Grub.
# x86-64 bootstrap, assuming load by MultiBoot-compliant loader.
# The MutliBoot specification is at:
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html
#
# Using GRUB 2, you can boot xv6 from a file stored in a
# Linux file system by copying kernel or kernelmemfs to /boot
# and then adding this menu entry:
#
# menuentry "xv6" {
# insmod ext2
# set root='(hd0,msdos1)'
# set kernel='/boot/kernel'
# echo "Loading ${kernel}..."
# multiboot ${kernel} ${kernel}
# boot
# }
# GRUB is a MultiBoot loader, as is qemu's -kernel option.
#include "asm.h"
#include "memlayout.h"
#include "mmu.h"
#include "param.h"
#include "memlayout.h"
# Multiboot header. Data to direct multiboot loader.
.p2align 2
# STACK is the size of the bootstrap stack.
#define STACK 8192
# MultiBoot header.
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Header-layout
.align 4
.text
.globl multiboot_header
multiboot_header:
#define magic 0x1badb002
#define flags 0
#define flags (1<<16 | 1<<0)
.long magic
.long flags
.long (-magic-flags)
.long (- magic - flags) # checksum
.long V2P_WO(multiboot_header) # header address
.long V2P_WO(multiboot_header) # load address
.long V2P_WO(edata) # load end address
.long V2P_WO(end) # bss end address
.long V2P_WO(start) # entry address
# By convention, the _start symbol specifies the ELF entry point.
# Since we haven't set up virtual memory yet, our entry point is
# the physical address of 'entry'.
.globl _start
_start = V2P_WO(entry)
# Entry point jumped to by boot loader. Running in 32-bit mode.
# http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Machine-state
#
# EAX = 0x2badb002
# EBX = address of multiboot information structure
# CS = 32-bit read/execute code segment with identity map
# DS, ES, FS, GS, SS = 32-bit read/write data segment with identity map
# A20 gate = enabled
# CR0 = PE set, PG clear
# EFLAGS = VM clear, IF clear
#
.code32
.globl start
start:
# Tell BIOS to do "warm reboot" when we shut down.
movw $0x1234, 0x472
# Entering xv6 on boot processor, with paging off.
.globl entry
entry:
# Turn on page size extension for 4Mbyte pages
movl %cr4, %eax
orl $(CR4_PSE), %eax
movl %eax, %cr4
# Set page directory
movl $(V2P_WO(entrypgdir)), %eax
movl %eax, %cr3
# Turn on paging.
movl %cr0, %eax
orl $(CR0_PG|CR0_WP), %eax
movl %eax, %cr0
# Set up multiboot arguments for main.
movl %eax, %edi
movl %ebx, %esi
# Set up the stack pointer.
movl $(stack + KSTACKSIZE), %esp
# Initialize stack.
movl $V2P_WO(stack+STACK), %esp
# Jump to main(), and switch to executing at
# high addresses. The indirect call is needed because
# the assembler produces a PC-relative instruction
# for a direct jump.
mov $main, %eax
jmp *%eax
# Zero bss. QEMU's MultiBoot seems not to.
# It's possible that the header above is not right, but it looks right.
# %edi is holding multiboot argument, so save in another register.
# (The stack is in the bss.)
movl %edi, %edx
movl $V2P_WO(edata), %edi
movl $V2P_WO(end), %ecx
subl $V2P_WO(edata), %ecx
movl $0, %eax
cld
rep stosb
movl %edx, %edi
.comm stack, KSTACKSIZE
call loadgdt
# Enter new 32-bit code segment (already in 32-bit mode).
ljmp $KCSEG32, $V2P_WO(start32) // code32 segment selector
start32:
# Initialize page table.
call initpagetables
call init32e
movl $V2P_WO(start64), %eax
# Enter 64-bit mode.
ljmp $KCSEG, $V2P_WO(tramp64) // code64 segment selector
.code64
start64:
# Load VA of stack
movabsq $(stack+STACK), %rsp
# Clear frame pointer for stack walks
movl $0, %ebp
# Call into C code.
call bpmain
# should not return from bpmain
jmp .
.code32
.global apstart
apstart:
call loadgdt
ljmp $KCSEG32, $V2P_WO(apstart32) // code32 segment selector
apstart32:
call init32e
movl $V2P_WO(apstart64), %eax
ljmp $KCSEG, $V2P_WO(tramp64) // code64 segment selector
.code64
apstart64:
# Remember (from bootothers), that our kernel stack pointer is
# at the top of our temporary stack.
popq %rax
movq %rax, %rsp
movq $0, %rbp
call apmain
1: jmp 1b
.code64
tramp64:
# The linker thinks we are running at tramp64, but we're actually
# running at PADDR(tramp64), so use an explicit calculation to
# load and jump to the correct address. %rax should hold the
# physical address of the jmp target.
movq $KERNBASE, %r11
addq %r11, %rax
jmp *%rax
# Initial stack
.comm stack, STACK
# Page tables. See section 4.5 of 253668.pdf.
# We map the first GB of physical memory at 0 and at 1 TB (not GB) before
# the end of virtual memory. At boot time we are using the mapping at 0
# but during ordinary execution we use the high mapping.
# The intent is that after bootstrap the kernel can expand this mapping
# to cover all the available physical memory.
# This would be easier if we could use the PS bit to create GB-sized entries
# and skip the pdt table, but not all chips support it, and QEMU doesn't.
.align 4096
pml4:
.quad V2P_WO(pdpt) + PTE_P + PTE_W // present, read/write
.quad 0
.space 4096 - 2*16
.quad V2P_WO(pdpt) + PTE_P + PTE_W
.quad 0
.align 4096
pdpt:
.quad V2P_WO(pdt) + PTE_P + PTE_W
.space 4096 - 8
.align 4096
pdt:
// Filled in below.
.space 4096
.code32
initpagetables:
pushl %edi
pushl %ecx
pushl %eax
// Set up 64-bit entry in %edx:%eax.
// Base address 0, present, read/write, large page.
movl $(0 | PTE_P | PTE_W | PTE_PS), %eax
movl $0, %edx
// Fill in 512 entries at pdt.
movl $V2P_WO(pdt), %edi
movl $512, %ecx
1:
// Write this 64-bit entry.
movl %eax, 0(%edi)
movl %edx, 4(%edi)
addl $8, %edi
// 64-bit add to prepare address for next entry.
// Because this is a large page entry, it covers 512 4k pages (2 MB).
add $(512*4096), %eax
adc $0, %edx
loop 1b
popl %eax
popl %ecx
popl %edi
ret
# Initialize IA-32e mode. See section 9.8.5 of 253668.pdf.
init32e:
# Set CR4.PAE and CR4.PSE = 1.
movl %cr4, %eax
orl $0x30, %eax
movl %eax, %cr4
# Load CR3 with physical base address of level 4 page table.
movl $V2P_WO(pml4), %eax
movl %eax, %cr3
# Enable IA-32e mode by setting IA32_EFER.LME = 1.
# Also turn on IA32_EFER.SCE (syscall enable).
movl $0xc0000080, %ecx
rdmsr
orl $0x101, %eax
wrmsr
# Enable paging by setting CR0.PG = 1.
movl %cr0, %eax
orl $0x80000000, %eax
movl %eax, %cr0
nop
nop
ret
loadgdt:
subl $8, %esp
movl $V2P_WO(bootgdt), 4(%esp)
movw $(8*NSEGS-1), 2(%esp)
lgdt 2(%esp)
addl $8, %esp
movl $KDSEG, %eax // data segment selector
movw %ax, %ds
movw %ax, %es
movw %ax, %ss
movl $0, %eax // null segment selector
movw %ax, %fs
movw %ax, %gs
ret

View file

@ -13,11 +13,9 @@
#
# Startothers (in main.c) sends the STARTUPs one at a time.
# It copies this code (start) at 0x7000. It puts the address of
# a newly allocated per-core stack in start-4,the address of the
# place to jump to (mpenter) in start-8, and the physical address
# a newly allocated per-core stack in start-12,the address of the
# place to jump to (apstart32) in start-4, and the physical address
# of entrypgdir in start-12.
#
# This code combines elements of bootasm.S and entry.S.
.code16
.globl start
@ -41,53 +39,22 @@ start:
# Complete the transition to 32-bit protected mode by using a long jmp
# to reload %cs and %eip. The segment descriptors are set up with no
# translation, so that the mapping is still the identity mapping.
ljmpl $(SEG_KCODE<<3), $(start32)
ljmpl $(KCSEG32), $start32
//PAGEBREAK!
.code32 # Tell assembler to generate 32-bit code now.
.code32
start32:
# Set up the protected-mode data segment registers
movw $(SEG_KDATA<<3), %ax # Our data segment selector
movw %ax, %ds # -> DS: Data Segment
movw %ax, %es # -> ES: Extra Segment
movw %ax, %ss # -> SS: Stack Segment
movw $0, %ax # Zero segments not ready for use
movw %ax, %fs # -> FS
movw %ax, %gs # -> GS
movl $start-12, %esp
movl start-4, %ecx
jmp *%ecx
# Turn on page size extension for 4Mbyte pages
movl %cr4, %eax
orl $(CR4_PSE), %eax
movl %eax, %cr4
# Use entrypgdir as our initial page table
movl (start-12), %eax
movl %eax, %cr3
# Turn on paging.
movl %cr0, %eax
orl $(CR0_PE|CR0_PG|CR0_WP), %eax
movl %eax, %cr0
# Switch to the stack allocated by startothers()
movl (start-4), %esp
# Call mpenter()
call *(start-8)
movw $0x8a00, %ax
movw %ax, %dx
outw %ax, %dx
movw $0x8ae0, %ax
outw %ax, %dx
spin:
jmp spin
.p2align 2
.align 4
gdt:
SEG_NULLASM
SEG_ASM(STA_X|STA_R, 0, 0xffffffff)
SEG_ASM(STA_W, 0, 0xffffffff)
SEG_ASM(0xa, 0, 0xffffffff)
SEG_ASM(0x2, 0, 0xffffffff)
.align 16
gdtdesc:
.word (gdtdesc - gdt - 1)
.word 0x17 # sizeof(gdt)-1
.long gdt

26
exec.c
View file

@ -4,6 +4,8 @@
#include "mmu.h"
#include "proc.h"
#include "defs.h"
#include "traps.h"
#include "msr.h"
#include "x86.h"
#include "elf.h"
@ -12,18 +14,18 @@ exec(char *path, char **argv)
{
char *s, *last;
int i, off;
uint argc, sz, sp, ustack[3+MAXARG+1];
uint64 argc, sz, sp, ustack[3+MAXARG+1];
struct elfhdr elf;
struct inode *ip;
struct proghdr ph;
pde_t *pgdir, *oldpgdir;
struct proc *curproc = myproc();
uint64 oldsz = curproc->sz;
begin_op();
if((ip = namei(path)) == 0){
end_op();
cprintf("exec: fail\n");
return -1;
}
ilock(ip);
@ -72,7 +74,7 @@ exec(char *path, char **argv)
for(argc = 0; argv[argc]; argc++) {
if(argc >= MAXARG)
goto bad;
sp = (sp - (strlen(argv[argc]) + 1)) & ~3;
sp = (sp - (strlen(argv[argc]) + 1)) & ~(sizeof(uint64)-1);
if(copyout(pgdir, sp, argv[argc], strlen(argv[argc]) + 1) < 0)
goto bad;
ustack[3+argc] = sp;
@ -81,10 +83,13 @@ exec(char *path, char **argv)
ustack[0] = 0xffffffff; // fake return PC
ustack[1] = argc;
ustack[2] = sp - (argc+1)*4; // argv pointer
ustack[2] = sp - (argc+1)*sizeof(uint64); // argv pointer
sp -= (3+argc+1) * 4;
if(copyout(pgdir, sp, ustack, (3+argc+1)*4) < 0)
curproc->tf->rdi = argc;
curproc->tf->rsi = sp - (argc+1)*sizeof(uint64);
sp -= (3+argc+1) * sizeof(uint64);
if(copyout(pgdir, sp, ustack, (3+argc+1)*sizeof(uint64)) < 0)
goto bad;
// Save program name for debugging.
@ -97,15 +102,16 @@ exec(char *path, char **argv)
oldpgdir = curproc->pgdir;
curproc->pgdir = pgdir;
curproc->sz = sz;
curproc->tf->eip = elf.entry; // main
curproc->tf->esp = sp;
curproc->tf->rip = elf.entry; // main
curproc->tf->rcx = elf.entry;
curproc->tf->rsp = sp;
switchuvm(curproc);
freevm(oldpgdir);
freevm(oldpgdir, oldsz);
return 0;
bad:
if(pgdir)
freevm(pgdir);
freevm(pgdir, sz);
if(ip){
iunlockput(ip);
end_op();

View file

@ -8,16 +8,15 @@
# exec(init, argv)
.globl start
start:
pushl $argv
pushl $init
pushl $0 // where caller pc would be
movl $SYS_exec, %eax
int $T_SYSCALL
mov $init, %rdi
mov $argv, %rsi
mov $SYS_exec, %rax
syscall
# for(;;) exit();
exit:
movl $SYS_exit, %eax
int $T_SYSCALL
mov $SYS_exit, %rax
syscall
jmp exit
# char init[] = "/init\0";

View file

@ -4,6 +4,7 @@
#include "types.h"
#include "defs.h"
#include "memlayout.h"
#include "traps.h"
#define IOAPIC 0xFEC00000 // Default physical address of IO APIC
@ -50,7 +51,7 @@ ioapicinit(void)
{
int i, id, maxintr;
ioapic = (volatile struct ioapic*)IOAPIC;
ioapic = P2V((volatile struct ioapic*)IOAPIC);
maxintr = (ioapicread(REG_VER) >> 16) & 0xFF;
id = ioapicread(REG_ID) >> 24;
if(id != ioapicid)

View file

@ -47,7 +47,7 @@ void
freerange(void *vstart, void *vend)
{
char *p;
p = (char*)PGROUNDUP((uint)vstart);
p = (char*)PGROUNDUP((uint64)vstart);
for(; p + PGSIZE <= (char*)vend; p += PGSIZE)
kfree(p);
}
@ -61,7 +61,7 @@ kfree(char *v)
{
struct run *r;
if((uint)v % PGSIZE || v < end || V2P(v) >= PHYSTOP)
if((uint64)v % PGSIZE || v < end || V2P(v) >= PHYSTOP)
panic("kfree");
// Fill with junk to catch dangling refs.
@ -91,6 +91,8 @@ kalloc(void)
kmem.freelist = r->next;
if(kmem.use_lock)
release(&kmem.lock);
if(r != 0 && (uint64) r < KERNBASE)
panic("kalloc");
return (char*)r;
}

View file

@ -1,22 +1,13 @@
/* Simple linker script for the JOS kernel.
See the GNU ld 'info' manual ("info ld") to learn the syntax. */
OUTPUT_FORMAT("elf32-i386", "elf32-i386", "elf32-i386")
OUTPUT_ARCH(i386)
ENTRY(_start)
OUTPUT_FORMAT("elf64-x86-64", "elf64-x86-64", "elf64-x86-64")
OUTPUT_ARCH(i386:x86-64)
SECTIONS
{
/* Link the kernel at this address: "." means the current address */
/* Must be equal to KERNLINK */
. = 0x80100000;
. = 0xFFFFFF0000100000;
PROVIDE(text = .);
.text : AT(0x100000) {
*(.text .stub .text.* .gnu.linkonce.t.*)
}
PROVIDE(etext = .); /* Define the 'etext' symbol to this value */
.rodata : {
*(.rodata .rodata.* .gnu.linkonce.r.*)
}
@ -38,31 +29,21 @@ SECTIONS
for this section */
}
/* Adjust the address for the data segment to the next page */
. = ALIGN(0x1000);
/* Conventionally, Unix linkers provide pseudo-symbols
* etext, edata, and end, at the end of the text, data, and bss.
* For the kernel mapping, we need the address at the beginning
* of the data section, but that's not one of the conventional
* symbols, because the convention started before there was a
* read-only rodata section between text and data. */
PROVIDE(data = .);
/* The data segment */
/* Conventionally, Unix linkers provide pseudo-symbols
* etext, edata, and end, at the end of the text, data, and bss.
* For the kernel mapping, we need the address at the beginning
* of the data section, but that's not one of the conventional
* symbols, because the convention started before there was a
* read-only rodata section between text and data. */
PROVIDE(data = .);
.data : {
*(.data)
}
PROVIDE(edata = .);
.bss : {
*(.bss)
}
PROVIDE(end = .);
/DISCARD/ : {
*(.eh_frame .note.GNU-stack)
}
}

67
main.c
View file

@ -6,17 +6,22 @@
#include "proc.h"
#include "x86.h"
static void startothers(void);
static void mpmain(void) __attribute__((noreturn));
extern pde_t *kpgdir;
extern char end[]; // first address after kernel loaded from ELF file
static void main(void) __attribute__((noreturn));
static void startothers(void);
// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
bpmain(uint64 mbmagic, uint64 mbaddr)
{
if(mbmagic != 0x2badb002)
panic("multiboot header not found");
kinit1(end, P2V(4*1024*1024)); // phys page allocator
kvmalloc(); // kernel page table
mpinit(); // detect other processors
@ -31,25 +36,18 @@ main(void)
binit(); // buffer cache
fileinit(); // file table
ideinit(); // disk
startothers(); // start other processors
kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()
userinit(); // first user process
mpmain(); // finish this processor's setup
}
// Other CPUs jump here from entryother.S.
static void
mpenter(void)
{
switchkvm();
seginit();
lapicinit();
mpmain();
main();
return 0;
}
// Common CPU setup code.
static void
mpmain(void)
main(void)
{
cprintf("cpu%d: starting %d\n", cpuid(), cpuid());
idtinit(); // load idt register
@ -57,7 +55,17 @@ mpmain(void)
scheduler(); // start running processes
}
pde_t entrypgdir[]; // For entry.S
// Other CPUs jump here from entryother.S.
void
apmain(void)
{
switchkvm();
seginit();
lapicinit();
main();
}
void apstart(void);
// Start the non-boot (AP) processors.
static void
@ -72,7 +80,7 @@ startothers(void)
// The linker has placed the image of entryother.S in
// _binary_entryother_start.
code = P2V(0x7000);
memmove(code, _binary_entryother_start, (uint)_binary_entryother_size);
memmove(code, _binary_entryother_start, (uint64)_binary_entryother_size);
for(c = cpus; c < cpus+ncpu; c++){
if(c == mycpu()) // We've started already.
@ -82,9 +90,8 @@ startothers(void)
// pgdir to use. We cannot use kpgdir yet, because the AP processor
// is running in low memory, so we use entrypgdir for the APs too.
stack = kalloc();
*(void**)(code-4) = stack + KSTACKSIZE;
*(void(**)(void))(code-8) = mpenter;
*(int**)(code-12) = (void *) V2P(entrypgdir);
*(uint32*)(code-4) = V2P(apstart);
*(uint64*)(code-12) = (uint64) (stack+KSTACKSIZE);
lapicstartap(c->apicid, V2P(code));
@ -94,23 +101,3 @@ startothers(void)
}
}
// The boot page table used in entry.S and entryother.S.
// Page directories (and page tables) must start on page boundaries,
// hence the __aligned__ attribute.
// PTE_PS in a page directory entry enables 4Mbyte pages.
__attribute__((__aligned__(PGSIZE)))
pde_t entrypgdir[NPDENTRIES] = {
// Map VA's [0, 4MB) to PA's [0, 4MB)
[0] = (0) | PTE_P | PTE_W | PTE_PS,
// Map VA's [KERNBASE, KERNBASE+4MB) to PA's [0, 4MB)
[KERNBASE>>PDXSHIFT] = (0) | PTE_P | PTE_W | PTE_PS,
};
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.

View file

@ -2,13 +2,14 @@
#define EXTMEM 0x100000 // Start of extended memory
#define PHYSTOP 0xE000000 // Top physical memory
#define DEVSPACE 0xFE000000 // Other devices are at high addresses
#define DEVSPACE 0xFE000000 // Other devices are top of 32-bit address space
#define DEVSPACETOP 0x100000000
// Key addresses for address space layout (see kmap in vm.c for layout)
#define KERNBASE 0x80000000 // First kernel virtual address
#define KERNBASE 0xFFFFFF0000000000 // First kernel virtual address
#define KERNLINK (KERNBASE+EXTMEM) // Address where kernel is linked
#define V2P(a) (((uint) (a)) - KERNBASE)
#define V2P(a) (((uint64) (a)) - KERNBASE)
#define P2V(a) ((void *)(((char *) (a)) + KERNBASE))
#define V2P_WO(x) ((x) - KERNBASE) // same as V2P, but without casts

232
mmu.h
View file

@ -2,8 +2,10 @@
// x86 memory management unit (MMU).
// Eflags register
#define FL_TF 0x00000100 // Trap Flag
#define FL_IF 0x00000200 // Interrupt Enable
// Control Register flags
#define CR0_PE 0x00000001 // Protection Enable
#define CR0_WP 0x00010000 // Write Protect
@ -11,81 +13,104 @@
#define CR4_PSE 0x00000010 // Page size extension
// various segment selectors.
#define SEG_KCODE 1 // kernel code
#define SEG_KDATA 2 // kernel data+stack
#define SEG_UCODE 3 // user code
#define SEG_UDATA 4 // user data+stack
#define SEG_TSS 5 // this process's task state
// Segment selectors (indexes) in our GDTs.
// Defined by our convention, not the architecture.
#define KCSEG32 (1<<3) /* kernel 32-bit code segment */
#define KCSEG (2<<3) /* kernel code segment */
#define KDSEG (3<<3) /* kernel data segment */
#define TSSSEG (4<<3) /* tss segment - takes two slots */
#define UDSEG (6<<3) /* user data segment */
#define UCSEG (7<<3) /* user code segment */
// cpu->gdt[NSEGS] holds the above segments.
#define NSEGS 6
#define NSEGS 8
#ifndef __ASSEMBLER__
// Segment Descriptor
struct segdesc {
uint lim_15_0 : 16; // Low bits of segment limit
uint base_15_0 : 16; // Low bits of segment base address
uint base_23_16 : 8; // Middle bits of segment base address
uint type : 4; // Segment type (see STS_ constants)
uint s : 1; // 0 = system, 1 = application
uint dpl : 2; // Descriptor Privilege Level
uint p : 1; // Present
uint lim_19_16 : 4; // High bits of segment limit
uint avl : 1; // Unused (available for software use)
uint rsv1 : 1; // Reserved
uint db : 1; // 0 = 16-bit segment, 1 = 32-bit segment
uint g : 1; // Granularity: limit scaled by 4K when set
uint base_31_24 : 8; // High bits of segment base address
uint16 limit0;
uint16 base0;
uint8 base1;
uint8 bits;
uint8 bitslimit1;
uint8 base2;
};
// Normal segment
#define SEG(type, base, lim, dpl) (struct segdesc) \
{ ((lim) >> 12) & 0xffff, (uint)(base) & 0xffff, \
((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
(uint)(lim) >> 28, 0, 0, 1, 1, (uint)(base) >> 24 }
#define SEG16(type, base, lim, dpl) (struct segdesc) \
{ (lim) & 0xffff, (uint)(base) & 0xffff, \
((uint)(base) >> 16) & 0xff, type, 1, dpl, 1, \
(uint)(lim) >> 16, 0, 0, 1, 0, (uint)(base) >> 24 }
// SEGDESC constructs a segment descriptor literal
// with the given, base, limit, and type bits.
#define SEGDESC(base, limit, bits) (struct segdesc){ \
(limit)&0xffff, (base)&0xffff, \
((base)>>16)&0xff, \
(bits)&0xff, \
(((bits)>>4)&0xf0) | ((limit>>16)&0xf), \
((base)>>24)&0xff, \
}
// SEGDESCHI constructs an extension segment descriptor
// literal that records the high bits of base.
#define SEGDESCHI(base) (struct segdesc) { \
(((base)>>32)&0xffff), (((base)>>48)&0xffff), \
}
#endif
#define DPL_USER 0x3 // User DPL
#define SEG_A (1<<0) /* segment accessed bit */
#define SEG_R (1<<1) /* readable (code) */
#define SEG_W (1<<1) /* writable (data) */
#define SEG_C (1<<2) /* conforming segment (code) */
#define SEG_E (1<<2) /* expand-down bit (data) */
#define SEG_CODE (1<<3) /* code segment (instead of data) */
// User and system segment bits.
#define SEG_S (1<<4) /* if 0, system descriptor */
#define SEG_DPL(x) ((x)<<5) /* descriptor privilege level (2 bits) */
#define SEG_P (1<<7) /* segment present */
#define SEG_AVL (1<<8) /* available for operating system use */
#define SEG_L (1<<9) /* long mode */
#define SEG_D (1<<10) /* default operation size 32-bit */
#define SEG_G (1<<11) /* granularity */
// Application segment type bits
#define STA_X 0x8 // Executable segment
#define STA_W 0x2 // Writeable (non-executable segments)
#define STA_R 0x2 // Readable (executable segments)
// System segment type bits
#define STS_T32A 0x9 // Available 32-bit TSS
#define STS_IG32 0xE // 32-bit Interrupt Gate
#define STS_TG32 0xF // 32-bit Trap Gate
#define SEG_LDT (2<<0) /* local descriptor table */
#define SEG_TSS64A (9<<0) /* available 64-bit TSS */
#define SEG_TSS64B (11<<0) /* busy 64-bit TSS */
#define SEG_CALL64 (12<<0) /* 64-bit call gate */
#define SEG_INTR64 (14<<0) /* 64-bit interrupt gate */
#define SEG_TRAP64 (15<<0) /* 64-bit trap gate */
// A virtual address 'la' has a three-part structure as follows:
// A virtual address 'la' has a six-part structure as follows:
//
// +--------10------+-------10-------+---------12----------+
// | Page Directory | Page Table | Offset within Page |
// | Index | Index | |
// +----------------+----------------+---------------------+
// \--- PDX(va) --/ \--- PTX(va) --/
// +--16--+---9---+------9-------+-----9----+----9-------+----12-------+
// | Sign | PML4 |Page Directory| Page Dir |Page Table | Offset Page |
// |Extend| Index | Pointer Index| Index | Index | in Page |
// +------+-------+--------------+----------+------------+-------------+
// \-PMX(va)-/\-PDPX(va)--/ \-PDX(va)-/ \-PTX(va)-/
#define PMX(va) (((uint64)(va) >> PML4XSHIFT) & PXMASK)
#define PDPX(va) (((uint64)(va) >> PDPXSHIFT) & PXMASK)
// page directory index
#define PDX(va) (((uint)(va) >> PDXSHIFT) & 0x3FF)
#define PDX(va) (((uint64)(va) >> PDXSHIFT) & PXMASK)
// page table index
#define PTX(va) (((uint)(va) >> PTXSHIFT) & 0x3FF)
#define PTX(va) (((uint64)(va) >> PTXSHIFT) & PXMASK)
// construct virtual address from indexes and offset
#define PGADDR(d, t, o) ((uint)((d) << PDXSHIFT | (t) << PTXSHIFT | (o)))
#define PGADDR(d, t, o) ((uint64)((d) << PDXSHIFT | (t) << PTXSHIFT | (o)))
// Page directory and page table constants.
#define NPDENTRIES 1024 // # directory entries per page directory
#define NPTENTRIES 1024 // # PTEs per page table
#define NPDENTRIES 512 // # directory entries per page directory
#define NPTENTRIES 512 // # PTEs per page table
#define PGSIZE 4096 // bytes mapped by a page
#define PTXSHIFT 12 // offset of PTX in a linear address
#define PDXSHIFT 22 // offset of PDX in a linear address
#define PDXSHIFT 21 // offset of PDX in a linear address
#define PDPXSHIFT 30 // offset of PDPX in a linear address
#define PML4XSHIFT 39 // offset of PML4X in a linear address
#define PXMASK 0X1FF
#define PGROUNDUP(sz) (((sz)+PGSIZE-1) & ~(PGSIZE-1))
#define PGROUNDDOWN(a) (((a)) & ~(PGSIZE-1))
@ -95,87 +120,54 @@ struct segdesc {
#define PTE_W 0x002 // Writeable
#define PTE_U 0x004 // User
#define PTE_PS 0x080 // Page Size
#define PTE_PWT 0x008 // Write-Through
#define PTE_PCD 0x010 // Cache-Disable
// Address in page table or page directory entry
#define PTE_ADDR(pte) ((uint)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint)(pte) & 0xFFF)
#define PTE_ADDR(pte) ((uint64)(pte) & ~0xFFF)
#define PTE_FLAGS(pte) ((uint64)(pte) & 0xFFF)
#ifndef __ASSEMBLER__
typedef uint pte_t;
// Task state segment format
typedef uint64 pml4e_t;
typedef uint64 pdpe_t;
typedef uint64 pte_t;
struct taskstate {
uint link; // Old ts selector
uint esp0; // Stack pointers and segment selectors
ushort ss0; // after an increase in privilege level
ushort padding1;
uint *esp1;
ushort ss1;
ushort padding2;
uint *esp2;
ushort ss2;
ushort padding3;
void *cr3; // Page directory base
uint *eip; // Saved state from last task switch
uint eflags;
uint eax; // More saved state (registers)
uint ecx;
uint edx;
uint ebx;
uint *esp;
uint *ebp;
uint esi;
uint edi;
ushort es; // Even more saved state (segment selectors)
ushort padding4;
ushort cs;
ushort padding5;
ushort ss;
ushort padding6;
ushort ds;
ushort padding7;
ushort fs;
ushort padding8;
ushort gs;
ushort padding9;
ushort ldt;
ushort padding10;
ushort t; // Trap on task switch
ushort iomb; // I/O map base address
uint8 reserved0[4];
uint64 rsp[3];
uint64 ist[8];
uint8 reserved1[10];
uint16 iomba;
uint8 iopb[0];
} __attribute__ ((packed));
#define INT_P (1<<7) /* interrupt descriptor present */
struct intgate
{
uint16 rip0;
uint16 cs;
uint8 reserved0;
uint8 bits;
uint16 rip1;
uint32 rip2;
uint32 reserved1;
};
// Gate descriptors for interrupts and traps
struct gatedesc {
uint off_15_0 : 16; // low 16 bits of offset in segment
uint cs : 16; // code segment selector
uint args : 5; // # args, 0 for interrupt/trap gates
uint rsv1 : 3; // reserved(should be zero I guess)
uint type : 4; // type(STS_{IG32,TG32})
uint s : 1; // must be 0 (system)
uint dpl : 2; // descriptor(meaning new) privilege level
uint p : 1; // Present
uint off_31_16 : 16; // high bits of offset in segment
};
// Set up a normal interrupt/trap gate descriptor.
// - istrap: 1 for a trap (= exception) gate, 0 for an interrupt gate.
// interrupt gate clears FL_IF, trap gate leaves FL_IF alone
// - sel: Code segment selector for interrupt/trap handler
// - off: Offset in code segment for interrupt/trap handler
// - dpl: Descriptor Privilege Level -
// the privilege level required for software to invoke
// this interrupt/trap gate explicitly using an int instruction.
#define SETGATE(gate, istrap, sel, off, d) \
{ \
(gate).off_15_0 = (uint)(off) & 0xffff; \
(gate).cs = (sel); \
(gate).args = 0; \
(gate).rsv1 = 0; \
(gate).type = (istrap) ? STS_TG32 : STS_IG32; \
(gate).s = 0; \
(gate).dpl = (d); \
(gate).p = 1; \
(gate).off_31_16 = (uint)(off) >> 16; \
// INTDESC constructs an interrupt descriptor literal
// that records the given code segment, instruction pointer,
// and type bits.
#define INTDESC(cs, rip, bits) (struct intgate){ \
(rip)&0xffff, (cs), 0, bits, ((rip)>>16)&0xffff, \
(uint64)(rip)>>32, 0, \
}
// See section 4.6 of amd64 vol2
struct desctr
{
uint16 limit;
uint64 base;
} __attribute__((packed, aligned(16))); // important!
#endif

6
mp.c
View file

@ -28,7 +28,7 @@ sum(uchar *addr, int len)
// Look for an MP structure in the len bytes at addr.
static struct mp*
mpsearch1(uint a, int len)
mpsearch1(uint64 a, int len)
{
uchar *e, *p, *addr;
@ -77,7 +77,7 @@ mpconfig(struct mp **pmp)
if((mp = mpsearch()) == 0 || mp->physaddr == 0)
return 0;
conf = (struct mpconf*) P2V((uint) mp->physaddr);
conf = (struct mpconf*) P2V((uint64) mp->physaddr);
if(memcmp(conf, "PCMP", 4) != 0)
return 0;
if(conf->version != 1 && conf->version != 4)
@ -101,7 +101,7 @@ mpinit(void)
if((conf = mpconfig(&mp)) == 0)
panic("Expect to run on an SMP");
ismp = 1;
lapic = (uint*)conf->lapicaddr;
lapic = P2V((uint64)conf->lapicaddr_p);
for(p=(uchar*)(conf+1), e=(uchar*)conf+conf->length; p<e; ){
switch(*p){
case MPPROC:

8
mp.h
View file

@ -2,7 +2,7 @@
struct mp { // floating pointer
uchar signature[4]; // "_MP_"
void *physaddr; // phys addr of MP config table
uint32 physaddr; // phys addr of MP config table
uchar length; // 1
uchar specrev; // [14]
uchar checksum; // all bytes must add up to 0
@ -17,10 +17,10 @@ struct mpconf { // configuration table header
uchar version; // [14]
uchar checksum; // all bytes must add up to 0
uchar product[20]; // product id
uint *oemtable; // OEM table pointer
uint32 oemtable; // OEM table pointer
ushort oemlength; // OEM table length
ushort entry; // entry count
uint *lapicaddr; // address of local APIC
uint32 lapicaddr_p; // address of local APIC
ushort xlength; // extended table length
uchar xchecksum; // extended table checksum
uchar reserved;
@ -42,7 +42,7 @@ struct mpioapic { // I/O APIC table entry
uchar apicno; // I/O APIC id
uchar version; // I/O APIC version
uchar flags; // I/O APIC flags
uint *addr; // I/O APIC address
uint32 addr_p; // I/O APIC address
};
// Table entry types

25
msr.h Normal file
View file

@ -0,0 +1,25 @@
// SYSCALL and SYSRET registers
#define MSR_STAR 0xc0000081
#define MSR_LSTAR 0xc0000082
#define MSR_CSTAR 0xc0000083
#define MSR_SFMASK 0xc0000084
// GS
#define MSR_GS_BASE 0xc0000101
#define MSR_GS_KERNBASE 0xc0000102
static inline uint64
readmsr(uint32 msr)
{
uint32 hi, lo;
__asm volatile("rdmsr" : "=d" (hi), "=a" (lo) : "c" (msr));
return ((uint64) lo) | (((uint64) hi) << 32);
}
static inline void
writemsr(uint64 msr, uint64 val)
{
uint32 lo = val & 0xffffffff;
uint32 hi = val >> 32;
__asm volatile("wrmsr" : : "c" (msr), "a" (lo), "d" (hi) : "memory");
}

View file

@ -2,6 +2,10 @@
#include "stat.h"
#include "user.h"
#include <stdarg.h>
static char digits[] = "0123456789ABCDEF";
static void
putc(int fd, char c)
{
@ -11,7 +15,6 @@ putc(int fd, char c)
static void
printint(int fd, int xx, int base, int sgn)
{
static char digits[] = "0123456789ABCDEF";
char buf[16];
int i, neg;
uint x;
@ -35,16 +38,25 @@ printint(int fd, int xx, int base, int sgn)
putc(fd, buf[i]);
}
static void
printptr(int fd, uint64 x) {
int i;
putc(fd, '0');
putc(fd, 'x');
for (i = 0; i < (sizeof(uint64) * 2); i++, x <<= 4)
putc(fd, digits[x >> (sizeof(uint64) * 8 - 4)]);
}
// Print to the given fd. Only understands %d, %x, %p, %s.
void
printf(int fd, const char *fmt, ...)
{
va_list ap;
char *s;
int c, i, state;
uint *ap;
va_start(ap, fmt);
state = 0;
ap = (uint*)(void*)&fmt + 1;
for(i = 0; fmt[i]; i++){
c = fmt[i] & 0xff;
if(state == 0){
@ -55,14 +67,13 @@ printf(int fd, const char *fmt, ...)
}
} else if(state == '%'){
if(c == 'd'){
printint(fd, *ap, 10, 1);
ap++;
} else if(c == 'x' || c == 'p'){
printint(fd, *ap, 16, 0);
ap++;
printint(fd, va_arg(ap, int), 10, 1);
} else if(c == 'x') {
printint(fd, va_arg(ap, int), 16, 0);
} else if(c == 'p') {
printptr(fd, va_arg(ap, uint64));
} else if(c == 's'){
s = (char*)*ap;
ap++;
s = va_arg(ap, char*);
if(s == 0)
s = "(null)";
while(*s != 0){
@ -70,8 +81,7 @@ printf(int fd, const char *fmt, ...)
s++;
}
} else if(c == 'c'){
putc(fd, *ap);
ap++;
putc(fd, va_arg(ap, uint));
} else if(c == '%'){
putc(fd, c);
} else {

32
proc.c
View file

@ -6,6 +6,7 @@
#include "x86.h"
#include "proc.h"
#include "spinlock.h"
#include "msr.h"
struct {
struct spinlock lock;
@ -16,7 +17,7 @@ static struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
extern void trapret(void);
extern void sysexit(void);
static void wakeup1(void *chan);
@ -104,13 +105,13 @@ found:
// Set up new context to start executing at forkret,
// which returns to trapret.
sp -= 4;
*(uint*)sp = (uint)trapret;
sp -= sizeof(uint64);
*(uint64*)sp = (uint64)sysexit;
sp -= sizeof *p->context;
p->context = (struct context*)sp;
memset(p->context, 0, sizeof *p->context);
p->context->eip = (uint)forkret;
p->context->eip = (uint64)forkret;
return p;
}
@ -128,16 +129,12 @@ userinit(void)
initproc = p;
if((p->pgdir = setupkvm()) == 0)
panic("userinit: out of memory?");
inituvm(p->pgdir, _binary_initcode_start, (int)_binary_initcode_size);
inituvm(p->pgdir, _binary_initcode_start, (uint64)_binary_initcode_size);
p->sz = PGSIZE;
memset(p->tf, 0, sizeof(*p->tf));
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
p->tf->es = p->tf->ds;
p->tf->ss = p->tf->ds;
p->tf->eflags = FL_IF;
p->tf->esp = PGSIZE;
p->tf->eip = 0; // beginning of initcode.S
p->tf->r11 = FL_IF;
p->tf->rsp = PGSIZE;
p->tf->rcx = 0; // beginning of initcode.S
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
@ -201,7 +198,7 @@ fork(void)
*np->tf = *curproc->tf;
// Clear %eax so that fork returns 0 in the child.
np->tf->eax = 0;
np->tf->rax = 0;
for(i = 0; i < NOFILE; i++)
if(curproc->ofile[i])
@ -289,8 +286,8 @@ wait(void)
pid = p->pid;
kfree(p->kstack);
p->kstack = 0;
freevm(p->pgdir);
p->pid = 0;
freevm(p->pgdir, p->sz);
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->killed = 0;
@ -339,6 +336,7 @@ scheduler(void)
// Switch to chosen process. It is the process's job
// to release ptable.lock and then reacquire it
// before jumping back to us.
c->proc = p;
switchuvm(p);
p->state = RUNNING;
@ -514,7 +512,7 @@ procdump(void)
int i;
struct proc *p;
char *state;
uint pc[10];
uint64 pc[10];
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
@ -525,7 +523,7 @@ procdump(void)
state = "???";
cprintf("%d %s %s", p->pid, state, p->name);
if(p->state == SLEEPING){
getcallerpcs((uint*)p->context->ebp+2, pc);
getcallerpcs((uint64*)p->context->ebp+2, pc);
for(i=0; i<10 && pc[i] != 0; i++)
cprintf(" %p", pc[i]);
}

21
proc.h
View file

@ -1,5 +1,8 @@
// Per-CPU state
struct cpu {
uint64 syscallno; // Temporary used by sysentry
uint64 usp; // Temporary used by sysentry
struct proc *proc; // The process running on this cpu or null
uchar apicid; // Local APIC ID
struct context *scheduler; // swtch() here to enter scheduler
struct taskstate ts; // Used by x86 to find stack for interrupt
@ -7,7 +10,6 @@ struct cpu {
volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli?
struct proc *proc; // The process running on this cpu or null
};
extern struct cpu cpus[NCPU];
@ -25,20 +27,23 @@ extern int ncpu;
// at the "Switch stacks" comment. Switch doesn't save eip explicitly,
// but it is on the stack and allocproc() manipulates it.
struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;
uint64 r15;
uint64 r14;
uint64 r13;
uint64 r12;
uint64 r11;
uint64 rbx;
uint64 ebp; //rbp
uint64 eip; //rip;
};
enum procstate { UNUSED, EMBRYO, SLEEPING, RUNNABLE, RUNNING, ZOMBIE };
// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
char *kstack; // Bottom of kernel stack for this process, must be first entry
uint64 sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process

View file

@ -69,17 +69,17 @@ release(struct spinlock *lk)
// Record the current call stack in pcs[] by following the %ebp chain.
void
getcallerpcs(void *v, uint pcs[])
getcallerpcs(void *v, uint64 pcs[])
{
uint *ebp;
uint64 *ebp;
int i;
ebp = (uint*)v - 2;
asm volatile("mov %%rbp, %0" : "=r" (ebp));
for(i = 0; i < 10; i++){
if(ebp == 0 || ebp < (uint*)KERNBASE || ebp == (uint*)0xffffffff)
if(ebp == 0 || ebp < (uint64*)KERNBASE || ebp == (uint64*)0xffffffff)
break;
pcs[i] = ebp[1]; // saved %eip
ebp = (uint*)ebp[0]; // saved %ebp
ebp = (uint64*)ebp[0]; // saved %ebp
}
for(; i < 10; i++)
pcs[i] = 0;

View file

@ -5,7 +5,7 @@ struct spinlock {
// For debugging:
char *name; // Name of lock.
struct cpu *cpu; // The cpu holding the lock.
uint pcs[10]; // The call stack (an array of program counters)
uint64 pcs[10]; // The call stack (an array of program counters)
// that locked the lock.
};

View file

@ -4,7 +4,7 @@
void*
memset(void *dst, int c, uint n)
{
if ((int)dst%4 == 0 && n%4 == 0){
if ((uint64)dst%4 == 0 && n%4 == 0){
c &= 0xFF;
stosl(dst, (c<<24)|(c<<16)|(c<<8)|c, n/4);
} else

36
swtch.S
View file

@ -8,22 +8,28 @@
.globl swtch
swtch:
movl 4(%esp), %eax
movl 8(%esp), %edx
# Save old callee-saved registers
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi
# Save old callee-save registers
push %rbp
push %rbx
push %r11
push %r12
push %r13
push %r14
push %r15
# Switch stacks
movl %esp, (%eax)
movl %edx, %esp
mov %rsp, (%rdi) # first arg is in rdi
mov %rsi, %rsp # second arg is in rsi
# Load new callee-save registers
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %rbx
pop %rbp
# Load new callee-saved registers
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

View file

@ -15,13 +15,13 @@
// Fetch the int at addr from the current process.
int
fetchint(uint addr, int *ip)
fetchint(uint64 addr, int *ip)
{
struct proc *curproc = myproc();
if(addr >= curproc->sz || addr+4 > curproc->sz)
return -1;
*ip = *(int*)(addr);
*ip = *(uint64*)(addr);
return 0;
}
@ -29,7 +29,7 @@ fetchint(uint addr, int *ip)
// Doesn't actually copy the string - just sets *pp to point at it.
// Returns length of string, not including nul.
int
fetchstr(uint addr, char **pp)
fetchstr(uint64 addr, char **pp)
{
char *s, *ep;
struct proc *curproc = myproc();
@ -45,11 +45,51 @@ fetchstr(uint addr, char **pp)
return -1;
}
static uint64
fetcharg(int n)
{
struct proc *curproc = myproc();
switch (n) {
case 0:
return curproc->tf->rdi;
case 1:
return curproc->tf->rsi;
case 2:
return curproc->tf->rdx;
case 3:
return curproc->tf->r10;
case 4:
return curproc->tf->r8;
case 5:
return curproc->tf->r9;
}
panic("fetcharg");
return -1;
}
int
fetchaddr(uint64 addr, uint64 *ip)
{
struct proc *curproc = myproc();
if(addr >= curproc->sz || addr+sizeof(uint64) > curproc->sz)
return -1;
*ip = *(uint64*)(addr);
return 0;
}
// Fetch the nth 32-bit system call argument.
int
argint(int n, int *ip)
{
return fetchint((myproc()->tf->esp) + 4 + 4*n, ip);
*ip = fetcharg(n);
return 0;
}
int
argaddr(int n, uint64 *ip)
{
*ip = fetcharg(n);
return 0;
}
// Fetch the nth word-sized system call argument as a pointer
@ -58,10 +98,10 @@ argint(int n, int *ip)
int
argptr(int n, char **pp, int size)
{
int i;
uint64 i;
struct proc *curproc = myproc();
if(argint(n, &i) < 0)
if(argaddr(n, &i) < 0)
return -1;
if(size < 0 || (uint)i >= curproc->sz || (uint)i+size > curproc->sz)
return -1;
@ -134,12 +174,12 @@ syscall(void)
int num;
struct proc *curproc = myproc();
num = curproc->tf->eax;
num = curproc->tf->rax;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
curproc->tf->eax = syscalls[num]();
curproc->tf->rax = syscalls[num]();
} else {
cprintf("%d %s: unknown sys call %d\n",
curproc->pid, curproc->name, num);
curproc->tf->eax = -1;
curproc->tf->rax = -1;
}
}

View file

@ -399,16 +399,16 @@ sys_exec(void)
{
char *path, *argv[MAXARG];
int i;
uint uargv, uarg;
uint64 uargv, uarg;
if(argstr(0, &path) < 0 || argint(1, (int*)&uargv) < 0){
if(argstr(0, &path) < 0 || argaddr(1, &uargv) < 0){
return -1;
}
memset(argv, 0, sizeof(argv));
for(i=0;; i++){
if(i >= NELEM(argv))
return -1;
if(fetchint(uargv+4*i, (int*)&uarg) < 0)
if(fetchaddr(uargv+sizeof(uint64)*i, (uint64*)&uarg) < 0)
return -1;
if(uarg == 0){
argv[i] = 0;

25
trap.c
View file

@ -9,8 +9,8 @@
#include "spinlock.h"
// Interrupt descriptor table (shared by all CPUs).
struct gatedesc idt[256];
extern uint vectors[]; // in vectors.S: array of 256 entry pointers
struct intgate idt[256];
extern uint64 vectors[]; // in vectors.S: array of 256 entry pointers
struct spinlock tickslock;
uint ticks;
@ -19,9 +19,10 @@ tvinit(void)
{
int i;
for(i = 0; i < 256; i++)
SETGATE(idt[i], 0, SEG_KCODE<<3, vectors[i], 0);
SETGATE(idt[T_SYSCALL], 1, SEG_KCODE<<3, vectors[T_SYSCALL], DPL_USER);
for(i=0; i<256; i++) {
idt[i] = INTDESC(KCSEG, vectors[i], INT_P | SEG_INTR64);
}
idtinit();
initlock(&tickslock, "time");
}
@ -29,7 +30,11 @@ tvinit(void)
void
idtinit(void)
{
lidt(idt, sizeof(idt));
struct desctr dtr;
dtr.limit = sizeof(idt) - 1;
dtr.base = (uint64)idt;
lidt((void *)&dtr.limit);
}
//PAGEBREAK: 41
@ -74,7 +79,7 @@ trap(struct trapframe *tf)
case T_IRQ0 + 7:
case T_IRQ0 + IRQ_SPURIOUS:
cprintf("cpu%d: spurious interrupt at %x:%x\n",
cpuid(), tf->cs, tf->eip);
cpuid(), tf->cs, tf->rip);
lapiceoi();
break;
@ -83,14 +88,14 @@ trap(struct trapframe *tf)
if(myproc() == 0 || (tf->cs&3) == 0){
// In kernel, it must be our mistake.
cprintf("unexpected trap %d from cpu %d eip %x (cr2=0x%x)\n",
tf->trapno, cpuid(), tf->eip, rcr2());
tf->trapno, cpuid(), tf->rip, rcr2());
panic("trap");
}
// In user space, assume process misbehaved.
cprintf("pid %d %s: trap %d err %d on cpu %d "
"eip 0x%x addr 0x%x--kill proc\n",
myproc()->pid, myproc()->name, tf->trapno,
tf->err, cpuid(), tf->eip, rcr2());
tf->err, cpuid(), tf->rip, rcr2());
myproc()->killed = 1;
}
@ -110,3 +115,5 @@ trap(struct trapframe *tf)
if(myproc() && myproc()->killed && (tf->cs&3) == DPL_USER)
exit();
}

146
trapasm.S
View file

@ -1,32 +1,136 @@
#include "param.h"
#include "x86.h"
#include "mmu.h"
# vectors.S sends all traps here.
# vectors.S sends all traps here.
.globl alltraps
alltraps:
# Build trap frame.
pushl %ds
pushl %es
pushl %fs
pushl %gs
pushal
push %r15
push %r14
push %r13
push %r12
push %r11
push %r10
push %r9
push %r8
push %rdi
push %rsi
push %rbp
push %rdx
push %rcx
push %rbx
push %rax
# Set up data segments.
movw $(SEG_KDATA<<3), %ax
movw %ax, %ds
movw %ax, %es
cmpw $KCSEG, 32(%rsp) # compare to saved cs
jz 1f
swapgs
# Call trap(tf), where tf=%esp
pushl %esp
1:mov %rsp, %rdi # frame in arg1
call trap
addl $4, %esp
# Return falls through to trapret...
# Return falls through to trapret...
.globl trapret
trapret:
popal
popl %gs
popl %fs
popl %es
popl %ds
addl $0x8, %esp # trapno and errcode
iret
cli
cmpw $KCSEG, 32(%rsp) # compare to saved cs
jz 1f
swapgs
1:pop %rax
pop %rbx
pop %rcx
pop %rdx
pop %rbp
pop %rsi
pop %rdi
pop %r8
pop %r9
pop %r10
pop %r11
pop %r12
pop %r13
pop %r14
pop %r15
add $16, %rsp # discard trapnum and errorcode
iretq
#PAGEBREAK!
# syscall_entry jumps here after syscall instruction
.globl sysentry
sysentry: # Build trap frame.
// load kernel stack address
swapgs
movq %rax, %gs:0 // save %rax in syscallno of cpu entry
movq %rsp, %gs:8 // user sp
movq %gs:16, %rax // proc entry
movq %ss:0(%rax), %rax // load kstack from proc
addq $(KSTACKSIZE), %rax
movq %rax, %rsp
movq %gs:0, %rax // restore rax
// push usp
push $0
push %gs:8
// safe eflags and eip
push %r11
push $UCSEG
push %rcx
// push errno and trapno to make stack look like a trap
push $0
push $64
// push values on kernel stack
push %r15
push %r14
push %r13
push %r12
push %r11
push %r10
push %r9
push %r8
push %rdi
push %rsi
push %rbp
push %rdx
push %rcx
push %rbx
push %rax
mov %rsp, %rdi # frame in arg1
call trap
#PAGEBREAK!
# Return falls through to trapret...
.globl sysexit
sysexit:
# to make sure we don't get any interrupts on the user stack while in
# supervisor mode. insufficient? (see vunerability reports for sysret)
cli
pop %rax
pop %rbx
pop %rcx
pop %rdx
pop %rbp
pop %rsi
pop %rdi
pop %r8
pop %r9
pop %r10
pop %r11
pop %r12
pop %r13
pop %r14
pop %r15
add $(5*8), %rsp # discard trapnum, errorcode, rip, cs and rflags
mov (%rsp),%rsp # switch to the user stack
swapgs
sysretq

View file

@ -36,3 +36,4 @@
#define IRQ_ERROR 19
#define IRQ_SPURIOUS 31

View file

@ -1,4 +1,10 @@
typedef unsigned int uint;
typedef unsigned short ushort;
typedef unsigned char uchar;
typedef uint pde_t;
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned long uint64;
typedef uint64 pde_t;

View file

@ -363,17 +363,29 @@ preempt(void)
printf(1, "preempt: ");
pid1 = fork();
if(pid1 < 0) {
printf(1, "fork failed");
exit();
}
if(pid1 == 0)
for(;;)
;
pid2 = fork();
if(pid2 < 0) {
printf(1, "fork failed\n");
exit();
}
if(pid2 == 0)
for(;;)
;
pipe(pfds);
pid3 = fork();
if(pid3 < 0) {
printf(1, "fork failed\n");
exit();
}
if(pid3 == 0){
close(pfds[0]);
if(write(pfds[1], "x", 1) != 1)
@ -1391,6 +1403,11 @@ forktest(void)
exit();
}
if (n == 0) {
printf(1, "no fork at all!\n");
exit();
}
if(n == 1000){
printf(1, "fork claimed to work 1000 times!\n");
exit();
@ -1414,16 +1431,16 @@ forktest(void)
void
sbrktest(void)
{
int fds[2], pid, pids[10], ppid;
char *a, *b, *c, *lastaddr, *oldbrk, *p, scratch;
uint amt;
int i, fds[2], pids[10], pid, ppid;
char *c, *oldbrk, scratch, *a, *b, *lastaddr, *p;
uint64 amt;
#define BIG (100*1024*1024)
printf(stdout, "sbrk test\n");
oldbrk = sbrk(0);
// can one sbrk() less than a page?
a = sbrk(0);
int i;
for(i = 0; i < 5000; i++){
b = sbrk(1);
if(b != a){
@ -1449,9 +1466,8 @@ sbrktest(void)
wait();
// can one grow address space to something big?
#define BIG (100*1024*1024)
a = sbrk(0);
amt = (BIG) - (uint)a;
amt = (BIG) - (uint64)a;
p = sbrk(amt);
if (p != a) {
printf(stdout, "sbrk test failed to grow big address space; enough phys mem?\n");
@ -1518,7 +1534,7 @@ sbrktest(void)
for(i = 0; i < sizeof(pids)/sizeof(pids[0]); i++){
if((pids[i] = fork()) == 0){
// allocate a lot of memory
sbrk(BIG - (uint)sbrk(0));
sbrk(BIG - (uint64)sbrk(0));
write(fds[1], "x", 1);
// sit around until killed
for(;;) sleep(1000);
@ -1526,6 +1542,7 @@ sbrktest(void)
if(pids[i] != -1)
read(fds[0], &scratch, 1);
}
// if those failed allocations freed up the pages they did allocate,
// we'll be able to allocate here
c = sbrk(4096);
@ -1549,7 +1566,7 @@ sbrktest(void)
void
validateint(int *p)
{
int res;
/* XXX int res;
asm("mov %%esp, %%ebx\n\t"
"mov %3, %%esp\n\t"
"int %2\n\t"
@ -1557,13 +1574,14 @@ validateint(int *p)
"=a" (res) :
"a" (SYS_sleep), "n" (T_SYSCALL), "c" (p) :
"ebx");
*/
}
void
validatetest(void)
{
int hi, pid;
uint p;
uint64 p;
printf(stdout, "validate test\n");
hi = 1100*1024;

2
usys.S
View file

@ -5,7 +5,7 @@
.globl name; \
name: \
movl $SYS_ ## name, %eax; \
int $T_SYSCALL; \
syscall; \
ret
SYSCALL(fork)

View file

@ -12,9 +12,9 @@ for(my $i = 0; $i < 256; $i++){
print ".globl vector$i\n";
print "vector$i:\n";
if(!($i == 8 || ($i >= 10 && $i <= 14) || $i == 17)){
print " pushl \$0\n";
print " push \$0\n";
}
print " pushl \$$i\n";
print " push \$$i\n";
print " jmp alltraps\n";
}
@ -23,7 +23,7 @@ print ".data\n";
print ".globl vectors\n";
print "vectors:\n";
for(my $i = 0; $i < 256; $i++){
print " .long vector$i\n";
print " .quad vector$i\n";
}
# sample output:
@ -31,8 +31,8 @@ for(my $i = 0; $i < 256; $i++){
# .globl alltraps
# .globl vector0
# vector0:
# pushl $0
# pushl $0
# push $0
# push $0
# jmp alltraps
# ...
#
@ -40,8 +40,8 @@ for(my $i = 0; $i < 256; $i++){
# .data
# .globl vectors
# vectors:
# .long vector0
# .long vector1
# .long vector2
# .quad vector0
# .quad vector1
# .quad vector2
# ...

211
vm.c
View file

@ -2,13 +2,34 @@
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "msr.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
#include "traps.h"
extern char data[]; // defined by kernel.ld
pde_t *kpgdir; // for use in scheduler()
void sysentry(void);
static pde_t *kpml4; // kernel address space, used by scheduler and bootup
// Bootstrap GDT. Used by boot.S but defined in C
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
struct segdesc bootgdt[NSEGS] = {
[0] = SEGDESC(0, 0, 0), // null
[1] = SEGDESC(0, 0xfffff, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // 32-bit kernel code
[2] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_L|SEG_G), // 64-bit kernel code
[3] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // kernel data
// The order of the user data and user code segments is
// important for syscall instructions. See initseg.
[6] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(3)|SEG_P|SEG_D|SEG_G), // 64-bit user data
[7] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(3)|SEG_P|SEG_L|SEG_G), // 64-bit user code
};
// Set up CPU's kernel segment descriptors.
// Run once on entry on each CPU.
@ -16,41 +37,82 @@ void
seginit(void)
{
struct cpu *c;
struct desctr dtr;
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
c = &cpus[cpuid()];
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
lgdt(c->gdt, sizeof(c->gdt));
c = mycpu();
memmove(c->gdt, bootgdt, sizeof bootgdt);
dtr.limit = sizeof(c->gdt)-1;
dtr.base = (uint64) c->gdt;
lgdt((void *)&dtr.limit);
// When executing a syscall instruction the CPU sets the SS selector
// to (star >> 32) + 8 and the CS selector to (star >> 32).
// When executing a sysret instruction the CPU sets the SS selector
// to (star >> 48) + 8 and the CS selector to (star >> 48) + 16.
uint64 star = ((((uint64)UCSEG|0x3)- 16)<<48)|((uint64)(KCSEG)<<32);
writemsr(MSR_STAR, star);
writemsr(MSR_LSTAR, (uint64)&sysentry);
writemsr(MSR_SFMASK, FL_TF | FL_IF);
// Initialize cpu-local storage.
writegs(KDSEG);
writemsr(MSR_GS_BASE, (uint64)c);
writemsr(MSR_GS_KERNBASE, (uint64)c);
}
// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pgdir, const void *va, int alloc)
walkpgdir(pde_t *pml4, const void *va, int alloc)
{
pml4e_t *pml4e;
pdpe_t *pdp;
pdpe_t *pdpe;
pde_t *pde;
pde_t *pd;
pte_t *pgtab;
pde = &pgdir[PDX(va)];
if(*pde & PTE_P){
pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
} else {
if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
// level 4
pml4e = &pml4[PMX(va)];
if(*pml4e & PTE_P)
pdp = (pdpe_t*)P2V(PTE_ADDR(*pml4e));
else {
if(!alloc || (pdp = (pdpe_t*)kalloc()) == 0)
return 0;
// Make sure all those PTE_P bits are zero.
memset(pgtab, 0, PGSIZE);
memset(pdp, 0, PGSIZE);
// The permissions here are overly generous, but they can
// be further restricted by the permissions in the page table
// entries, if necessary.
*pml4e = V2P(pdp) | PTE_P | PTE_W | PTE_U;
}
// XXX avoid repetition
// level 3
pdpe = &pdp[PDPX(va)];
if(*pdpe & PTE_P)
pd = (pde_t*)P2V(PTE_ADDR(*pdpe));
else {
if(!alloc || (pd = (pde_t*)kalloc()) == 0)
return 0;
memset(pd, 0, PGSIZE);
*pdpe = V2P(pd) | PTE_P | PTE_W | PTE_U;
}
// level 2
pde = &pd[PDX(va)];
if(*pde & PTE_P)
pgtab = (pte_t*)P2V(PTE_ADDR(*pde));
else {
if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
return 0;
memset(pgtab, 0, PGSIZE);
*pde = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
}
// level 1
return &pgtab[PTX(va)];
}
@ -58,13 +120,13 @@ walkpgdir(pde_t *pgdir, const void *va, int alloc)
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
mappages(pde_t *pgdir, void *va, uint64 size, uint64 pa, int perm)
{
char *a, *last;
pte_t *pte;
a = (char*)PGROUNDDOWN((uint)va);
last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
a = (char*)PGROUNDDOWN((uint64)va);
last = (char*)PGROUNDDOWN(((uint64)va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0)
return -1;
@ -80,7 +142,7 @@ mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
}
// There is one page table per process, plus one that's used when
// a CPU is not running any process (kpgdir). The kernel uses the
// a CPU is not running any process (kpml4). The kernel uses the
// current process's page table during system calls and interrupts;
// page protection bits prevent user code from using the kernel's
// mappings.
@ -104,35 +166,36 @@ mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
// every process's page table.
static struct kmap {
void *virt;
uint phys_start;
uint phys_end;
uint64 phys_start;
uint64 phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
{ (void*)DEVSPACE, DEVSPACE, 0, PTE_W}, // more devices
{ (void*)P2V(DEVSPACE), DEVSPACE, DEVSPACETOP, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
pde_t *pgdir;
pde_t *pml4;
struct kmap *k;
if((pgdir = (pde_t*)kalloc()) == 0)
if((pml4 = (pde_t*)kalloc()) == 0)
return 0;
memset(pgdir, 0, PGSIZE);
if (P2V(PHYSTOP) > (void*)DEVSPACE)
memset(pml4, 0, PGSIZE);
if (PHYSTOP > DEVSPACE)
panic("PHYSTOP too high");
for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
if(mappages(pgdir, k->virt, k->phys_end - k->phys_start,
for(k = kmap; k < &kmap[NELEM(kmap)]; k++) {
if(mappages(pml4, k->virt, k->phys_end - k->phys_start,
(uint)k->phys_start, k->perm) < 0) {
freevm(pgdir);
freevm(pml4, 0);
return 0;
}
return pgdir;
}
return pml4;
}
// Allocate one page table for the machine for the kernel address
@ -140,7 +203,7 @@ setupkvm(void)
void
kvmalloc(void)
{
kpgdir = setupkvm();
kpml4 = setupkvm();
switchkvm();
}
@ -149,13 +212,17 @@ kvmalloc(void)
void
switchkvm(void)
{
lcr3(V2P(kpgdir)); // switch to the kernel page table
lcr3(V2P(kpml4)); // switch to the kernel page table
}
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
struct desctr dtr;
struct cpu *c;
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
@ -164,16 +231,22 @@ switchuvm(struct proc *p)
panic("switchuvm: no pgdir");
pushcli();
mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
sizeof(mycpu()->ts)-1, 0);
mycpu()->gdt[SEG_TSS].s = 0;
mycpu()->ts.ss0 = SEG_KDATA << 3;
mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;
// setting IOPL=0 in eflags *and* iomb beyond the tss segment limit
// forbids I/O instructions (e.g., inb and outb) from user space
mycpu()->ts.iomb = (ushort) 0xFFFF;
ltr(SEG_TSS << 3);
c = mycpu();
uint64 base = (uint64) &(c->ts);
c->gdt[TSSSEG>>3] = SEGDESC(base, (sizeof(c->ts)-1), SEG_P|SEG_TSS64A);
c->gdt[(TSSSEG>>3)+1] = SEGDESCHI(base);
c->ts.rsp[0] = (uint64) p->kstack + KSTACKSIZE;
c->ts.iomba = (ushort) 0xFFFF;
dtr.limit = sizeof(c->gdt) - 1;
dtr.base = (uint64)c->gdt;
lgdt((void *)&dtr.limit);
ltr(TSSSEG);
lcr3(V2P(p->pgdir)); // switch to process's address space
popcli();
}
@ -197,10 +270,11 @@ inituvm(pde_t *pgdir, char *init, uint sz)
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
uint i, pa, n;
uint i, n;
uint64 pa;
pte_t *pte;
if((uint) addr % PGSIZE != 0)
if((uint64) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
@ -222,7 +296,7 @@ int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
uint a;
uint64 a;
if(newsz >= KERNBASE)
return 0;
@ -233,13 +307,11 @@ allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
cprintf("allocuvm out of memory\n");
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
cprintf("allocuvm out of memory (2)\n");
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
@ -253,10 +325,10 @@ allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
int
deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
deallocuvm(pde_t *pgdir, uint64 oldsz, uint64 newsz)
{
pte_t *pte;
uint a, pa;
uint64 a, pa;
if(newsz >= oldsz)
return oldsz;
@ -281,20 +353,34 @@ deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
// Free a page table and all the physical memory pages
// in the user part.
void
freevm(pde_t *pgdir)
freevm(pde_t *pml4, uint64 sz)
{
uint i;
uint i, j, k;
pde_t *pdp, *pd, *pt;
if(pgdir == 0)
if(pml4 == 0)
panic("freevm: no pgdir");
deallocuvm(pgdir, KERNBASE, 0);
deallocuvm(pml4, sz, 0);
for(i = 0; i < NPDENTRIES; i++){
if(pgdir[i] & PTE_P){
char * v = P2V(PTE_ADDR(pgdir[i]));
kfree(v);
if(pml4[i] & PTE_P){
pdp = (pdpe_t*)P2V(PTE_ADDR(pml4[i]));
for(j = 0; j < NPDENTRIES; j++){
if(pdp[j] & PTE_P){
pd = (pde_t*)P2V(PTE_ADDR(pdp[j]));
for(k = 0; k < NPDENTRIES; k++){
if(pd[k] & PTE_P) {
pt = (pde_t*)P2V(PTE_ADDR(pd[k]));
kfree((char*)pt);
}
}
kfree((char*)pd);
}
}
kfree((char*)pdp);
}
}
kfree((char*)pgdir);
kfree((char*)pml4);
}
// Clear PTE_U on a page. Used to create an inaccessible
@ -317,7 +403,8 @@ copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
uint pa, i, flags;
uint64 pa, i;
uint flags;
char *mem;
if((d = setupkvm()) == 0)
@ -340,7 +427,7 @@ copyuvm(pde_t *pgdir, uint sz)
return d;
bad:
freevm(d);
freevm(d, sz);
return 0;
}
@ -366,7 +453,7 @@ int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
uint n, va0;
uint64 n, va0;
buf = (char*)p;
while(len > 0){

104
x86.h
View file

@ -1,5 +1,7 @@
// Routines to let C code use special x86 instructions.
#ifndef __ASSEMBLER__
static inline uchar
inb(ushort port)
{
@ -57,32 +59,16 @@ stosl(void *addr, int data, int cnt)
"memory", "cc");
}
struct segdesc;
static inline void
lgdt(struct segdesc *p, int size)
lgdt(void *p)
{
volatile ushort pd[3];
pd[0] = size-1;
pd[1] = (uint)p;
pd[2] = (uint)p >> 16;
asm volatile("lgdt (%0)" : : "r" (pd));
asm volatile("lgdt (%0)" : : "r" (p) : "memory");
}
struct gatedesc;
static inline void
lidt(struct gatedesc *p, int size)
lidt(void *p)
{
volatile ushort pd[3];
pd[0] = size-1;
pd[1] = (uint)p;
pd[2] = (uint)p >> 16;
asm volatile("lidt (%0)" : : "r" (pd));
asm volatile("lidt (%0)" : : "r" (p) : "memory");
}
static inline void
@ -91,11 +77,11 @@ ltr(ushort sel)
asm volatile("ltr %0" : : "r" (sel));
}
static inline uint
static inline uint64
readeflags(void)
{
uint eflags;
asm volatile("pushfl; popl %0" : "=r" (eflags));
uint64 eflags;
asm volatile("pushf; pop %0" : "=r" (eflags));
return eflags;
}
@ -133,51 +119,53 @@ xchg(volatile uint *addr, uint newval)
static inline uint
rcr2(void)
{
uint val;
asm volatile("movl %%cr2,%0" : "=r" (val));
uint64 val;
asm volatile("mov %%cr2,%0" : "=r" (val));
return val;
}
static inline void
lcr3(uint val)
lcr3(uint64 val)
{
asm volatile("movl %0,%%cr3" : : "r" (val));
asm volatile("mov %0,%%cr3" : : "r" (val));
}
static inline void
writegs(uint16 v)
{
__asm volatile("movw %0, %%gs" : : "r" (v));
}
//PAGEBREAK: 36
// Layout of the trap frame built on the stack by the
// hardware and by trapasm.S, and passed to trap().
struct trapframe {
// registers as pushed by pusha
uint edi;
uint esi;
uint ebp;
uint oesp; // useless & ignored
uint ebx;
uint edx;
uint ecx;
uint eax;
uint64 rax;
uint64 rbx;
uint64 rcx;
uint64 rdx;
uint64 rbp;
uint64 rsi;
uint64 rdi;
uint64 r8;
uint64 r9;
uint64 r10;
uint64 r11;
uint64 r12;
uint64 r13;
uint64 r14;
uint64 r15;
uint64 trapno;
uint64 err;
uint64 rip;
uint16 cs;
uint16 padding[3];
uint64 rflags;
uint64 rsp;
uint64 ss;
}__attribute__((packed));
// rest of trap frame
ushort gs;
ushort padding1;
ushort fs;
ushort padding2;
ushort es;
ushort padding3;
ushort ds;
ushort padding4;
uint trapno;
#endif
// below here defined by x86 hardware
uint err;
uint eip;
ushort cs;
ushort padding5;
uint eflags;
// below here only when crossing rings, such as from user to kernel
uint esp;
ushort ss;
ushort padding6;
};
#define TF_CS 144 // offset in trapframe for saved cs