Merge branch 'riscv' into riscv

This commit is contained in:
Frans Kaashoek 2020-08-10 13:05:17 -04:00 committed by GitHub
commit c31d35d803
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
31 changed files with 1074 additions and 251 deletions

22
.editorconfig Normal file
View file

@ -0,0 +1,22 @@
; https://editorconfig.org
root = true
[*]
end_of_line = lf
insert_final_newline = true
indent_style = space
indent_size = 4
[*.{c,h}]
indent_size = 2
[*.S]
indent_size = 8
[*.ld]
indent_size = 2
[Makefile]
indent_style = tab
indent_size = 8

View file

@ -40,8 +40,10 @@ TOOLPREFIX := $(shell if riscv64-unknown-elf-objdump -i 2>&1 | grep 'elf64-big'
then echo 'riscv64-unknown-elf-'; \ then echo 'riscv64-unknown-elf-'; \
elif riscv64-linux-gnu-objdump -i 2>&1 | grep 'elf64-big' >/dev/null 2>&1; \ elif riscv64-linux-gnu-objdump -i 2>&1 | grep 'elf64-big' >/dev/null 2>&1; \
then echo 'riscv64-linux-gnu-'; \ then echo 'riscv64-linux-gnu-'; \
elif riscv64-unknown-linux-gnu-objdump -i 2>&1 | grep 'elf64-big' >/dev/null 2>&1; \
then echo 'riscv64-unknown-linux-gnu-'; \
else echo "***" 1>&2; \ else echo "***" 1>&2; \
echo "*** Error: Couldn't find an riscv64 version of GCC/binutils." 1>&2; \ echo "*** Error: Couldn't find a riscv64 version of GCC/binutils." 1>&2; \
echo "*** To turn off this error, run 'gmake TOOLPREFIX= ...'." 1>&2; \ echo "*** To turn off this error, run 'gmake TOOLPREFIX= ...'." 1>&2; \
echo "***" 1>&2; exit 1; fi) echo "***" 1>&2; exit 1; fi)
endif endif
@ -104,7 +106,7 @@ $U/_forktest: $U/forktest.o $(ULIB)
$(LD) $(LDFLAGS) -N -e main -Ttext 0 -o $U/_forktest $U/forktest.o $U/ulib.o $U/usys.o $(LD) $(LDFLAGS) -N -e main -Ttext 0 -o $U/_forktest $U/forktest.o $U/ulib.o $U/usys.o
$(OBJDUMP) -S $U/_forktest > $U/forktest.asm $(OBJDUMP) -S $U/_forktest > $U/forktest.asm
mkfs/mkfs: mkfs/mkfs.c $K/fs.h mkfs/mkfs: mkfs/mkfs.c $K/fs.h $K/param.h
gcc -Werror -Wall -I. -o mkfs/mkfs mkfs/mkfs.c gcc -Werror -Wall -I. -o mkfs/mkfs mkfs/mkfs.c
# Prevent deletion of intermediate files, e.g. cat.o, after first build, so # Prevent deletion of intermediate files, e.g. cat.o, after first build, so
@ -127,6 +129,7 @@ UPROGS=\
$U/_sh\ $U/_sh\
$U/_stressfs\ $U/_stressfs\
$U/_usertests\ $U/_usertests\
$U/_grind\
$U/_wc\ $U/_wc\
$U/_zombie\ $U/_zombie\
@ -153,9 +156,9 @@ ifndef CPUS
CPUS := 3 CPUS := 3
endif endif
QEMUEXTRA = -drive file=fs1.img,if=none,format=raw,id=x1 -device virtio-blk-device,drive=x1,bus=virtio-mmio-bus.1 QEMUOPTS = -machine virt -bios none -kernel $K/kernel -m 128M -smp $(CPUS) -nographic
QEMUOPTS = -machine virt -bios none -kernel $K/kernel -m 3G -smp $(CPUS) -nographic QEMUOPTS += -drive file=fs.img,if=none,format=raw,id=x0
QEMUOPTS += -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0 QEMUOPTS += -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0
qemu: $K/kernel fs.img qemu: $K/kernel fs.img
$(QEMU) $(QEMUOPTS) $(QEMU) $(QEMUOPTS)

View file

@ -28,7 +28,8 @@ struct {
struct buf buf[NBUF]; struct buf buf[NBUF];
// Linked list of all buffers, through prev/next. // Linked list of all buffers, through prev/next.
// head.next is most recently used. // Sorted by how recently the buffer was used.
// head.next is most recent, head.prev is least.
struct buf head; struct buf head;
} bcache; } bcache;
@ -71,7 +72,8 @@ bget(uint dev, uint blockno)
} }
} }
// Not cached; recycle an unused buffer. // Not cached.
// Recycle the least recently used (LRU) unused buffer.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){ for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if(b->refcnt == 0) { if(b->refcnt == 0) {
b->dev = dev; b->dev = dev;
@ -110,7 +112,7 @@ bwrite(struct buf *b)
} }
// Release a locked buffer. // Release a locked buffer.
// Move to the head of the MRU list. // Move to the head of the most-recently-used list.
void void
brelse(struct buf *b) brelse(struct buf *b)
{ {

View file

@ -7,7 +7,6 @@ struct buf {
uint refcnt; uint refcnt;
struct buf *prev; // LRU cache list struct buf *prev; // LRU cache list
struct buf *next; struct buf *next;
struct buf *qnext; // disk queue
uchar data[BSIZE]; uchar data[BSIZE];
}; };

View file

@ -27,6 +27,8 @@
// //
// send one character to the uart. // send one character to the uart.
// called by printf, and to echo input characters,
// but not from write().
// //
void void
consputc(int c) consputc(int c)
@ -40,9 +42,9 @@ consputc(int c)
if(c == BACKSPACE){ if(c == BACKSPACE){
// if the user typed backspace, overwrite with a space. // if the user typed backspace, overwrite with a space.
uartputc('\b'); uartputc(' '); uartputc('\b'); uartputc_sync('\b'); uartputc_sync(' '); uartputc_sync('\b');
} else { } else {
uartputc(c); uartputc_sync(c);
} }
} }
@ -70,11 +72,11 @@ consolewrite(int user_src, uint64 src, int n)
char c; char c;
if(either_copyin(&c, user_src, src+i, 1) == -1) if(either_copyin(&c, user_src, src+i, 1) == -1)
break; break;
consputc(c); uartputc(c);
} }
release(&cons.lock); release(&cons.lock);
return n; return i;
} }
// //

View file

@ -52,6 +52,7 @@ struct inode* nameiparent(char*, char*);
int readi(struct inode*, int, uint64, uint, uint); int readi(struct inode*, int, uint64, uint, uint);
void stati(struct inode*, struct stat*); void stati(struct inode*, struct stat*);
int writei(struct inode*, int, uint64, uint, uint); int writei(struct inode*, int, uint64, uint, uint);
void itrunc(struct inode*);
// ramdisk.c // ramdisk.c
void ramdiskinit(void); void ramdiskinit(void);
@ -149,6 +150,7 @@ void usertrapret(void);
void uartinit(void); void uartinit(void);
void uartintr(void); void uartintr(void);
void uartputc(int); void uartputc(int);
void uartputc_sync(int);
int uartgetc(void); int uartgetc(void);
// vm.c // vm.c
@ -173,7 +175,6 @@ int copyinstr(pagetable_t, char *, uint64, uint64);
// plic.c // plic.c
void plicinit(void); void plicinit(void);
void plicinithart(void); void plicinithart(void);
uint64 plic_pending(void);
int plic_claim(void); int plic_claim(void);
void plic_complete(int); void plic_complete(int);

View file

@ -97,7 +97,7 @@ exec(char *path, char **argv)
// arguments to user main(argc, argv) // arguments to user main(argc, argv)
// argc is returned via the system call return // argc is returned via the system call return
// value, which goes in a0. // value, which goes in a0.
p->tf->a1 = sp; p->trapframe->a1 = sp;
// Save program name for debugging. // Save program name for debugging.
for(last=s=path; *s; s++) for(last=s=path; *s; s++)
@ -109,9 +109,10 @@ exec(char *path, char **argv)
oldpagetable = p->pagetable; oldpagetable = p->pagetable;
p->pagetable = pagetable; p->pagetable = pagetable;
p->sz = sz; p->sz = sz;
p->tf->epc = elf.entry; // initial program counter = main p->trapframe->epc = elf.entry; // initial program counter = main
p->tf->sp = sp; // initial stack pointer p->trapframe->sp = sp; // initial stack pointer
proc_freepagetable(oldpagetable, oldsz); proc_freepagetable(oldpagetable, oldsz);
return argc; // this ends up in a0, the first argument to main(argc, argv) return argc; // this ends up in a0, the first argument to main(argc, argv)
bad: bad:

View file

@ -2,3 +2,4 @@
#define O_WRONLY 0x001 #define O_WRONLY 0x001
#define O_RDWR 0x002 #define O_RDWR 0x002
#define O_CREATE 0x200 #define O_CREATE 0x200
#define O_TRUNC 0x400

View file

@ -22,7 +22,6 @@
#include "file.h" #include "file.h"
#define min(a, b) ((a) < (b) ? (a) : (b)) #define min(a, b) ((a) < (b) ? (a) : (b))
static void itrunc(struct inode*);
// there should be one superblock per disk device, but we run with // there should be one superblock per disk device, but we run with
// only one device // only one device
struct superblock sb; struct superblock sb;
@ -406,11 +405,8 @@ bmap(struct inode *ip, uint bn)
} }
// Truncate inode (discard contents). // Truncate inode (discard contents).
// Only called when the inode has no links // Caller must hold ip->lock.
// to it (no directory entries referring to it) void
// and has no in-memory reference to it (is
// not an open file or current directory).
static void
itrunc(struct inode *ip) itrunc(struct inode *ip)
{ {
int i, j; int i, j;
@ -463,7 +459,7 @@ readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n)
struct buf *bp; struct buf *bp;
if(off > ip->size || off + n < off) if(off > ip->size || off + n < off)
return -1; return 0;
if(off + n > ip->size) if(off + n > ip->size)
n = ip->size - off; n = ip->size - off;
@ -476,7 +472,7 @@ readi(struct inode *ip, int user_dst, uint64 dst, uint off, uint n)
} }
brelse(bp); brelse(bp);
} }
return n; return tot;
} }
// Write data to inode. // Write data to inode.

View file

@ -8,25 +8,37 @@ SECTIONS
* where qemu's -kernel jumps. * where qemu's -kernel jumps.
*/ */
. = 0x80000000; . = 0x80000000;
.text :
{ .text : {
*(.text) *(.text .text.*)
. = ALIGN(0x1000); . = ALIGN(0x1000);
_trampoline = .;
*(trampsec) *(trampsec)
}
. = ALIGN(0x1000); . = ALIGN(0x1000);
ASSERT(. - _trampoline == 0x1000, "error: trampoline larger than one page");
PROVIDE(etext = .); PROVIDE(etext = .);
}
.rodata : {
. = ALIGN(16);
*(.srodata .srodata.*) /* do not need to distinguish this from .rodata */
. = ALIGN(16);
*(.rodata .rodata.*)
}
/*
* make sure end is after data and bss.
*/
.data : { .data : {
*(.data) . = ALIGN(16);
*(.sdata .sdata.*) /* do not need to distinguish this from .data */
. = ALIGN(16);
*(.data .data.*)
} }
.bss : { .bss : {
*(.bss) . = ALIGN(16);
*(.sbss*) *(.sbss .sbss.*) /* do not need to distinguish this from .bss */
PROVIDE(end = .); . = ALIGN(16);
*(.bss .bss.*)
} }
PROVIDE(end = .);
} }

View file

@ -62,6 +62,6 @@
// fixed-size stack // fixed-size stack
// expandable heap // expandable heap
// ... // ...
// TRAPFRAME (p->tf, used by the trampoline) // TRAPFRAME (p->trapframe, used by the trampoline)
// TRAMPOLINE (the same page as in the kernel) // TRAMPOLINE (the same page as in the kernel)
#define TRAPFRAME (TRAMPOLINE - PGSIZE) #define TRAPFRAME (TRAMPOLINE - PGSIZE)

View file

@ -83,7 +83,7 @@ pipewrite(struct pipe *pi, uint64 addr, int n)
acquire(&pi->lock); acquire(&pi->lock);
for(i = 0; i < n; i++){ for(i = 0; i < n; i++){
while(pi->nwrite == pi->nread + PIPESIZE){ //DOC: pipewrite-full while(pi->nwrite == pi->nread + PIPESIZE){ //DOC: pipewrite-full
if(pi->readopen == 0 || myproc()->killed){ if(pi->readopen == 0 || pr->killed){
release(&pi->lock); release(&pi->lock);
return -1; return -1;
} }
@ -96,7 +96,7 @@ pipewrite(struct pipe *pi, uint64 addr, int n)
} }
wakeup(&pi->nread); wakeup(&pi->nread);
release(&pi->lock); release(&pi->lock);
return n; return i;
} }
int int
@ -108,7 +108,7 @@ piperead(struct pipe *pi, uint64 addr, int n)
acquire(&pi->lock); acquire(&pi->lock);
while(pi->nread == pi->nwrite && pi->writeopen){ //DOC: pipe-empty while(pi->nread == pi->nwrite && pi->writeopen){ //DOC: pipe-empty
if(myproc()->killed){ if(pr->killed){
release(&pi->lock); release(&pi->lock);
return -1; return -1;
} }

View file

@ -28,26 +28,11 @@ plicinithart(void)
*(uint32*)PLIC_SPRIORITY(hart) = 0; *(uint32*)PLIC_SPRIORITY(hart) = 0;
} }
// return a bitmap of which IRQs are waiting
// to be served.
uint64
plic_pending(void)
{
uint64 mask;
//mask = *(uint32*)(PLIC + 0x1000);
//mask |= (uint64)*(uint32*)(PLIC + 0x1004) << 32;
mask = *(uint64*)PLIC_PENDING;
return mask;
}
// ask the PLIC what interrupt we should serve. // ask the PLIC what interrupt we should serve.
int int
plic_claim(void) plic_claim(void)
{ {
int hart = cpuid(); int hart = cpuid();
//int irq = *(uint32*)(PLIC + 0x201004);
int irq = *(uint32*)PLIC_SCLAIM(hart); int irq = *(uint32*)PLIC_SCLAIM(hart);
return irq; return irq;
} }
@ -57,6 +42,5 @@ void
plic_complete(int irq) plic_complete(int irq)
{ {
int hart = cpuid(); int hart = cpuid();
//*(uint32*)(PLIC + 0x201004) = irq;
*(uint32*)PLIC_SCLAIM(hart) = irq; *(uint32*)PLIC_SCLAIM(hart) = irq;
} }

View file

@ -20,6 +20,7 @@ static void wakeup1(struct proc *chan);
extern char trampoline[]; // trampoline.S extern char trampoline[]; // trampoline.S
// initialize the proc table at boot time.
void void
procinit(void) procinit(void)
{ {
@ -106,7 +107,7 @@ found:
p->pid = allocpid(); p->pid = allocpid();
// Allocate a trapframe page. // Allocate a trapframe page.
if((p->tf = (struct trapframe *)kalloc()) == 0){ if((p->trapframe = (struct trapframe *)kalloc()) == 0){
release(&p->lock); release(&p->lock);
return 0; return 0;
} }
@ -116,7 +117,7 @@ found:
// Set up new context to start executing at forkret, // Set up new context to start executing at forkret,
// which returns to user space. // which returns to user space.
memset(&p->context, 0, sizeof p->context); memset(&p->context, 0, sizeof(p->context));
p->context.ra = (uint64)forkret; p->context.ra = (uint64)forkret;
p->context.sp = p->kstack + PGSIZE; p->context.sp = p->kstack + PGSIZE;
@ -129,9 +130,9 @@ found:
static void static void
freeproc(struct proc *p) freeproc(struct proc *p)
{ {
if(p->tf) if(p->trapframe)
kfree((void*)p->tf); kfree((void*)p->trapframe);
p->tf = 0; p->trapframe = 0;
if(p->pagetable) if(p->pagetable)
proc_freepagetable(p->pagetable, p->sz); proc_freepagetable(p->pagetable, p->sz);
p->pagetable = 0; p->pagetable = 0;
@ -145,8 +146,8 @@ freeproc(struct proc *p)
p->state = UNUSED; p->state = UNUSED;
} }
// Create a page table for a given process, // Create a user page table for a given process,
// with no user pages, but with trampoline pages. // with no user memory, but with trampoline pages.
pagetable_t pagetable_t
proc_pagetable(struct proc *p) proc_pagetable(struct proc *p)
{ {
@ -164,7 +165,7 @@ proc_pagetable(struct proc *p)
// map the trapframe just below TRAMPOLINE, for trampoline.S. // map the trapframe just below TRAMPOLINE, for trampoline.S.
mappages(pagetable, TRAPFRAME, PGSIZE, mappages(pagetable, TRAPFRAME, PGSIZE,
(uint64)(p->tf), PTE_R | PTE_W); (uint64)(p->trapframe), PTE_R | PTE_W);
return pagetable; return pagetable;
} }
@ -176,7 +177,6 @@ proc_freepagetable(pagetable_t pagetable, uint64 sz)
{ {
uvmunmap(pagetable, TRAMPOLINE, PGSIZE, 0); uvmunmap(pagetable, TRAMPOLINE, PGSIZE, 0);
uvmunmap(pagetable, TRAPFRAME, PGSIZE, 0); uvmunmap(pagetable, TRAPFRAME, PGSIZE, 0);
if(sz > 0)
uvmfree(pagetable, sz); uvmfree(pagetable, sz);
} }
@ -207,8 +207,8 @@ userinit(void)
p->sz = PGSIZE; p->sz = PGSIZE;
// prepare for the very first "return" from kernel to user. // prepare for the very first "return" from kernel to user.
p->tf->epc = 0; // user program counter p->trapframe->epc = 0; // user program counter
p->tf->sp = PGSIZE; // user stack pointer p->trapframe->sp = PGSIZE; // user stack pointer
safestrcpy(p->name, "initcode", sizeof(p->name)); safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/"); p->cwd = namei("/");
@ -263,10 +263,10 @@ fork(void)
np->parent = p; np->parent = p;
// copy saved user registers. // copy saved user registers.
*(np->tf) = *(p->tf); *(np->trapframe) = *(p->trapframe);
// Cause fork to return 0 in the child. // Cause fork to return 0 in the child.
np->tf->a0 = 0; np->trapframe->a0 = 0;
// increment reference counts on open file descriptors. // increment reference counts on open file descriptors.
for(i = 0; i < NOFILE; i++) for(i = 0; i < NOFILE; i++)
@ -457,7 +457,7 @@ scheduler(void)
// before jumping back to us. // before jumping back to us.
p->state = RUNNING; p->state = RUNNING;
c->proc = p; c->proc = p;
swtch(&c->scheduler, &p->context); swtch(&c->context, &p->context);
// Process is done running for now. // Process is done running for now.
// It should have changed its p->state before coming back. // It should have changed its p->state before coming back.
@ -491,7 +491,7 @@ sched(void)
panic("sched interruptible"); panic("sched interruptible");
intena = mycpu()->intena; intena = mycpu()->intena;
swtch(&p->context, &mycpu()->scheduler); swtch(&p->context, &mycpu()->context);
mycpu()->intena = intena; mycpu()->intena = intena;
} }

View file

@ -21,7 +21,7 @@ struct context {
// Per-CPU state. // Per-CPU state.
struct cpu { struct cpu {
struct proc *proc; // The process running on this cpu, or null. struct proc *proc; // The process running on this cpu, or null.
struct context scheduler; // swtch() here to enter scheduler(). struct context context; // swtch() here to enter scheduler().
int noff; // Depth of push_off() nesting. int noff; // Depth of push_off() nesting.
int intena; // Were interrupts enabled before push_off()? int intena; // Were interrupts enabled before push_off()?
}; };
@ -95,10 +95,10 @@ struct proc {
int pid; // Process ID int pid; // Process ID
// these are private to the process, so p->lock need not be held. // these are private to the process, so p->lock need not be held.
uint64 kstack; // Bottom of kernel stack for this process uint64 kstack; // Virtual address of kernel stack
uint64 sz; // Size of process memory (bytes) uint64 sz; // Size of process memory (bytes)
pagetable_t pagetable; // Page table pagetable_t pagetable; // User page table
struct trapframe *tf; // data page for trampoline.S struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process struct context context; // swtch() here to run process
struct file *ofile[NOFILE]; // Open files struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory struct inode *cwd; // Current directory

View file

@ -261,7 +261,6 @@ r_time()
static inline void static inline void
intr_on() intr_on()
{ {
w_sie(r_sie() | SIE_SEIE | SIE_STIE | SIE_SSIE);
w_sstatus(r_sstatus() | SSTATUS_SIE); w_sstatus(r_sstatus() | SSTATUS_SIE);
} }

View file

@ -34,7 +34,8 @@ acquire(struct spinlock *lk)
// Tell the C compiler and the processor to not move loads or stores // Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory // past this point, to ensure that the critical section's memory
// references happen after the lock is acquired. // references happen strictly after the lock is acquired.
// On RISC-V, this emits a fence instruction.
__sync_synchronize(); __sync_synchronize();
// Record info about lock acquisition for holding() and debugging. // Record info about lock acquisition for holding() and debugging.
@ -52,8 +53,10 @@ release(struct spinlock *lk)
// Tell the C compiler and the CPU to not move loads or stores // Tell the C compiler and the CPU to not move loads or stores
// past this point, to ensure that all the stores in the critical // past this point, to ensure that all the stores in the critical
// section are visible to other CPUs before the lock is released. // section are visible to other CPUs before the lock is released,
// On RISC-V, this turns into a fence instruction. // and that loads in the critical section occur strictly before
// the lock is released.
// On RISC-V, this emits a fence instruction.
__sync_synchronize(); __sync_synchronize();
// Release the lock, equivalent to lk->locked = 0. // Release the lock, equivalent to lk->locked = 0.
@ -69,13 +72,12 @@ release(struct spinlock *lk)
} }
// Check whether this cpu is holding the lock. // Check whether this cpu is holding the lock.
// Interrupts must be off.
int int
holding(struct spinlock *lk) holding(struct spinlock *lk)
{ {
int r; int r;
push_off();
r = (lk->locked && lk->cpu == mycpu()); r = (lk->locked && lk->cpu == mycpu());
pop_off();
return r; return r;
} }
@ -100,9 +102,9 @@ pop_off(void)
struct cpu *c = mycpu(); struct cpu *c = mycpu();
if(intr_get()) if(intr_get())
panic("pop_off - interruptible"); panic("pop_off - interruptible");
c->noff -= 1; if(c->noff < 1)
if(c->noff < 0)
panic("pop_off"); panic("pop_off");
c->noff -= 1;
if(c->noff == 0 && c->intena) if(c->noff == 0 && c->intena)
intr_on(); intr_on();
} }

View file

@ -36,6 +36,7 @@ start()
// delegate all interrupts and exceptions to supervisor mode. // delegate all interrupts and exceptions to supervisor mode.
w_medeleg(0xffff); w_medeleg(0xffff);
w_mideleg(0xffff); w_mideleg(0xffff);
w_sie(r_sie() | SIE_SEIE | SIE_STIE | SIE_SSIE);
// ask for clock interrupts. // ask for clock interrupts.
timerinit(); timerinit();

View file

@ -37,17 +37,17 @@ argraw(int n)
struct proc *p = myproc(); struct proc *p = myproc();
switch (n) { switch (n) {
case 0: case 0:
return p->tf->a0; return p->trapframe->a0;
case 1: case 1:
return p->tf->a1; return p->trapframe->a1;
case 2: case 2:
return p->tf->a2; return p->trapframe->a2;
case 3: case 3:
return p->tf->a3; return p->trapframe->a3;
case 4: case 4:
return p->tf->a4; return p->trapframe->a4;
case 5: case 5:
return p->tf->a5; return p->trapframe->a5;
} }
panic("argraw"); panic("argraw");
return -1; return -1;
@ -135,12 +135,12 @@ syscall(void)
int num; int num;
struct proc *p = myproc(); struct proc *p = myproc();
num = p->tf->a7; num = p->trapframe->a7;
if(num > 0 && num < NELEM(syscalls) && syscalls[num]) { if(num > 0 && num < NELEM(syscalls) && syscalls[num]) {
p->tf->a0 = syscalls[num](); p->trapframe->a0 = syscalls[num]();
} else { } else {
printf("%d %s: unknown sys call %d\n", printf("%d %s: unknown sys call %d\n",
p->pid, p->name, num); p->pid, p->name, num);
p->tf->a0 = -1; p->trapframe->a0 = -1;
} }
} }

View file

@ -341,6 +341,10 @@ sys_open(void)
f->readable = !(omode & O_WRONLY); f->readable = !(omode & O_WRONLY);
f->writable = (omode & O_WRONLY) || (omode & O_RDWR); f->writable = (omode & O_WRONLY) || (omode & O_RDWR);
if((omode & O_TRUNC) && ip->type == T_FILE){
itrunc(ip);
}
iunlock(ip); iunlock(ip);
end_op(); end_op();

View file

@ -20,7 +20,7 @@ uservec:
# in supervisor mode, but with a # in supervisor mode, but with a
# user page table. # user page table.
# #
# sscratch points to where the process's p->tf is # sscratch points to where the process's p->trapframe is
# mapped into user space, at TRAPFRAME. # mapped into user space, at TRAPFRAME.
# #
@ -60,20 +60,20 @@ uservec:
sd t5, 272(a0) sd t5, 272(a0)
sd t6, 280(a0) sd t6, 280(a0)
# save the user a0 in p->tf->a0 # save the user a0 in p->trapframe->a0
csrr t0, sscratch csrr t0, sscratch
sd t0, 112(a0) sd t0, 112(a0)
# restore kernel stack pointer from p->tf->kernel_sp # restore kernel stack pointer from p->trapframe->kernel_sp
ld sp, 8(a0) ld sp, 8(a0)
# make tp hold the current hartid, from p->tf->kernel_hartid # make tp hold the current hartid, from p->trapframe->kernel_hartid
ld tp, 32(a0) ld tp, 32(a0)
# load the address of usertrap(), p->tf->kernel_trap # load the address of usertrap(), p->trapframe->kernel_trap
ld t0, 16(a0) ld t0, 16(a0)
# restore kernel page table from p->tf->kernel_satp # restore kernel page table from p->trapframe->kernel_satp
ld t1, 0(a0) ld t1, 0(a0)
csrw satp, t1 csrw satp, t1
sfence.vma zero, zero sfence.vma zero, zero

View file

@ -48,7 +48,7 @@ usertrap(void)
struct proc *p = myproc(); struct proc *p = myproc();
// save user program counter. // save user program counter.
p->tf->epc = r_sepc(); p->trapframe->epc = r_sepc();
if(r_scause() == 8){ if(r_scause() == 8){
// system call // system call
@ -58,7 +58,7 @@ usertrap(void)
// sepc points to the ecall instruction, // sepc points to the ecall instruction,
// but we want to return to the next instruction. // but we want to return to the next instruction.
p->tf->epc += 4; p->trapframe->epc += 4;
// an interrupt will change sstatus &c registers, // an interrupt will change sstatus &c registers,
// so don't enable until done with those registers. // so don't enable until done with those registers.
@ -91,8 +91,9 @@ usertrapret(void)
{ {
struct proc *p = myproc(); struct proc *p = myproc();
// turn off interrupts, since we're switching // we're about to switch the destination of traps from
// now from kerneltrap() to usertrap(). // kerneltrap() to usertrap(), so turn off interrupts until
// we're back in user space, where usertrap() is correct.
intr_off(); intr_off();
// send syscalls, interrupts, and exceptions to trampoline.S // send syscalls, interrupts, and exceptions to trampoline.S
@ -100,10 +101,10 @@ usertrapret(void)
// set up trapframe values that uservec will need when // set up trapframe values that uservec will need when
// the process next re-enters the kernel. // the process next re-enters the kernel.
p->tf->kernel_satp = r_satp(); // kernel page table p->trapframe->kernel_satp = r_satp(); // kernel page table
p->tf->kernel_sp = p->kstack + PGSIZE; // process's kernel stack p->trapframe->kernel_sp = p->kstack + PGSIZE; // process's kernel stack
p->tf->kernel_trap = (uint64)usertrap; p->trapframe->kernel_trap = (uint64)usertrap;
p->tf->kernel_hartid = r_tp(); // hartid for cpuid() p->trapframe->kernel_hartid = r_tp(); // hartid for cpuid()
// set up the registers that trampoline.S's sret will use // set up the registers that trampoline.S's sret will use
// to get to user space. // to get to user space.
@ -115,7 +116,7 @@ usertrapret(void)
w_sstatus(x); w_sstatus(x);
// set S Exception Program Counter to the saved user pc. // set S Exception Program Counter to the saved user pc.
w_sepc(p->tf->epc); w_sepc(p->trapframe->epc);
// tell trampoline.S the user page table to switch to. // tell trampoline.S the user page table to switch to.
uint64 satp = MAKE_SATP(p->pagetable); uint64 satp = MAKE_SATP(p->pagetable);
@ -129,7 +130,6 @@ usertrapret(void)
// interrupts and exceptions from kernel code go here via kernelvec, // interrupts and exceptions from kernel code go here via kernelvec,
// on whatever the current kernel stack is. // on whatever the current kernel stack is.
// must be 4-byte aligned to fit in stvec.
void void
kerneltrap() kerneltrap()
{ {
@ -189,9 +189,16 @@ devintr()
uartintr(); uartintr();
} else if(irq == VIRTIO0_IRQ){ } else if(irq == VIRTIO0_IRQ){
virtio_disk_intr(); virtio_disk_intr();
} else if(irq){
printf("unexpected interrupt irq=%d\n", irq);
} }
// the PLIC allows each device to raise at most one
// interrupt at a time; tell the PLIC the device is
// now allowed to interrupt again.
if(irq)
plic_complete(irq); plic_complete(irq);
return 1; return 1;
} else if(scause == 0x8000000000000001L){ } else if(scause == 0x8000000000000001L){
// software interrupt from a machine-mode timer interrupt, // software interrupt from a machine-mode timer interrupt,

View file

@ -18,18 +18,35 @@
// the UART control registers. // the UART control registers.
// some have different meanings for // some have different meanings for
// read vs write. // read vs write.
// http://byterunner.com/16550.html // see http://byterunner.com/16550.html
#define RHR 0 // receive holding register (for input bytes) #define RHR 0 // receive holding register (for input bytes)
#define THR 0 // transmit holding register (for output bytes) #define THR 0 // transmit holding register (for output bytes)
#define IER 1 // interrupt enable register #define IER 1 // interrupt enable register
#define IER_TX_ENABLE (1<<0)
#define IER_RX_ENABLE (1<<1)
#define FCR 2 // FIFO control register #define FCR 2 // FIFO control register
#define FCR_FIFO_ENABLE (1<<0)
#define FCR_FIFO_CLEAR (3<<1) // clear the content of the two FIFOs
#define ISR 2 // interrupt status register #define ISR 2 // interrupt status register
#define LCR 3 // line control register #define LCR 3 // line control register
#define LCR_EIGHT_BITS (3<<0)
#define LCR_BAUD_LATCH (1<<7) // special mode to set baud rate
#define LSR 5 // line status register #define LSR 5 // line status register
#define LSR_RX_READY (1<<0) // input is waiting to be read from RHR
#define LSR_TX_IDLE (1<<5) // THR can accept another character to send
#define ReadReg(reg) (*(Reg(reg))) #define ReadReg(reg) (*(Reg(reg)))
#define WriteReg(reg, v) (*(Reg(reg)) = (v)) #define WriteReg(reg, v) (*(Reg(reg)) = (v))
// the transmit output buffer.
struct spinlock uart_tx_lock;
#define UART_TX_BUF_SIZE 32
char uart_tx_buf[UART_TX_BUF_SIZE];
int uart_tx_w; // write next to uart_tx_buf[uart_tx_w++]
int uart_tx_r; // read next from uart_tx_buf[uar_tx_r++]
void uartstart();
void void
uartinit(void) uartinit(void)
{ {
@ -37,7 +54,7 @@ uartinit(void)
WriteReg(IER, 0x00); WriteReg(IER, 0x00);
// special mode to set baud rate. // special mode to set baud rate.
WriteReg(LCR, 0x80); WriteReg(LCR, LCR_BAUD_LATCH);
// LSB for baud rate of 38.4K. // LSB for baud rate of 38.4K.
WriteReg(0, 0x03); WriteReg(0, 0x03);
@ -47,23 +64,87 @@ uartinit(void)
// leave set-baud mode, // leave set-baud mode,
// and set word length to 8 bits, no parity. // and set word length to 8 bits, no parity.
WriteReg(LCR, 0x03); WriteReg(LCR, LCR_EIGHT_BITS);
// reset and enable FIFOs. // reset and enable FIFOs.
WriteReg(FCR, 0x07); WriteReg(FCR, FCR_FIFO_ENABLE | FCR_FIFO_CLEAR);
// enable receive interrupts. // enable transmit and receive interrupts.
WriteReg(IER, 0x01); WriteReg(IER, IER_TX_ENABLE | IER_RX_ENABLE);
initlock(&uart_tx_lock, "uart");
} }
// write one output character to the UART. // add a character to the output buffer and tell the
// UART to start sending if it isn't already.
// blocks if the output buffer is full.
// because it may block, it can't be called
// from interrupts; it's only suitable for use
// by write().
void void
uartputc(int c) uartputc(int c)
{ {
acquire(&uart_tx_lock);
while(1){
if(((uart_tx_w + 1) % UART_TX_BUF_SIZE) == uart_tx_r){
// buffer is full.
// wait for uartstart() to open up space in the buffer.
sleep(&uart_tx_r, &uart_tx_lock);
} else {
uart_tx_buf[uart_tx_w] = c;
uart_tx_w = (uart_tx_w + 1) % UART_TX_BUF_SIZE;
uartstart();
release(&uart_tx_lock);
return;
}
}
}
// alternate version of uartputc() that doesn't
// use interrupts, for use by kernel printf() and
// to echo characters. it spins waiting for the uart's
// output register to be empty.
void
uartputc_sync(int c)
{
push_off();
// wait for Transmit Holding Empty to be set in LSR. // wait for Transmit Holding Empty to be set in LSR.
while((ReadReg(LSR) & (1 << 5)) == 0) while((ReadReg(LSR) & LSR_TX_IDLE) == 0)
; ;
WriteReg(THR, c); WriteReg(THR, c);
pop_off();
}
// if the UART is idle, and a character is waiting
// in the transmit buffer, send it.
// caller must hold uart_tx_lock.
// called from both the top- and bottom-half.
void
uartstart()
{
while(1){
if(uart_tx_w == uart_tx_r){
// transmit buffer is empty.
return;
}
if((ReadReg(LSR) & LSR_TX_IDLE) == 0){
// the UART transmit holding register is full,
// so we cannot give it another byte.
// it will interrupt when it's ready for a new byte.
return;
}
int c = uart_tx_buf[uart_tx_r];
uart_tx_r = (uart_tx_r + 1) % UART_TX_BUF_SIZE;
// maybe uartputc() is waiting for space in the buffer.
wakeup(&uart_tx_r);
WriteReg(THR, c);
}
} }
// read one input character from the UART. // read one input character from the UART.
@ -79,14 +160,22 @@ uartgetc(void)
} }
} }
// trap.c calls here when the uart interrupts. // handle a uart interrupt, raised because input has
// arrived, or the uart is ready for more output, or
// both. called from trap.c.
void void
uartintr(void) uartintr(void)
{ {
// read and process incoming characters.
while(1){ while(1){
int c = uartgetc(); int c = uartgetc();
if(c == -1) if(c == -1)
break; break;
consoleintr(c); consoleintr(c);
} }
// send buffered characters.
acquire(&uart_tx_lock);
uartstart();
release(&uart_tx_lock);
} }

View file

@ -16,9 +16,7 @@ extern char etext[]; // kernel.ld sets this to end of kernel code.
extern char trampoline[]; // trampoline.S extern char trampoline[]; // trampoline.S
/* /*
* create a direct-map page table for the kernel and * create a direct-map page table for the kernel.
* turn on paging. called early, in supervisor mode.
* the page allocator is already initialized.
*/ */
void void
kvminit() kvminit()
@ -70,7 +68,7 @@ kvminithart()
// 21..29 -- 9 bits of level-1 index. // 21..29 -- 9 bits of level-1 index.
// 12..20 -- 9 bits of level-0 index. // 12..20 -- 9 bits of level-0 index.
// 0..11 -- 12 bits of byte offset within the page. // 0..11 -- 12 bits of byte offset within the page.
static pte_t * pte_t *
walk(pagetable_t pagetable, uint64 va, int alloc) walk(pagetable_t pagetable, uint64 va, int alloc)
{ {
if(va >= MAXVA) if(va >= MAXVA)
@ -278,7 +276,7 @@ uvmdealloc(pagetable_t pagetable, uint64 oldsz, uint64 newsz)
// Recursively free page-table pages. // Recursively free page-table pages.
// All leaf mappings must already have been removed. // All leaf mappings must already have been removed.
static void void
freewalk(pagetable_t pagetable) freewalk(pagetable_t pagetable)
{ {
// there are 2^9 = 512 PTEs in a page table. // there are 2^9 = 512 PTEs in a page table.
@ -301,6 +299,7 @@ freewalk(pagetable_t pagetable)
void void
uvmfree(pagetable_t pagetable, uint64 sz) uvmfree(pagetable_t pagetable, uint64 sz)
{ {
if(sz > 0)
uvmunmap(pagetable, 0, sz, 1); uvmunmap(pagetable, 0, sz, 1);
freewalk(pagetable); freewalk(pagetable);
} }

View file

@ -1,88 +0,0 @@
//
// test program for the alarm lab.
// you can modify this file for testing,
// but please make sure your kernel
// modifications pass the original
// versions of these tests.
//
#include "kernel/param.h"
#include "kernel/types.h"
#include "kernel/stat.h"
#include "kernel/riscv.h"
#include "user/user.h"
void test0();
void test1();
void periodic();
int
main(int argc, char *argv[])
{
test0();
test1();
exit();
}
volatile static int count;
void
periodic()
{
count = count + 1;
printf("alarm!\n");
sigreturn();
}
// tests whether the kernel calls
// the alarm handler even a single time.
void
test0()
{
int i;
printf("test0 start\n");
count = 0;
sigalarm(2, periodic);
for(i = 0; i < 1000*500000; i++){
if((i % 250000) == 0)
write(2, ".", 1);
if(count > 0)
break;
}
sigalarm(0, 0);
if(count > 0){
printf("test0 passed\n");
} else {
printf("test0 failed\n");
}
}
void __attribute__ ((noinline)) foo(int i, int *j) {
if((i % 2500000) == 0) {
write(2, ".", 1);
}
*j += 1;
}
void
test1()
{
int i;
int j;
printf("test1 start\n");
count = 0;
j = 0;
sigalarm(2, periodic);
for(i = 0; i < 500000000; i++){
if(count >= 10)
break;
foo(i, &j);
}
if(i != j || count < 10){
// i should equal j
printf("test1 failed\n");
} else {
printf("test1 passed\n");
}
}

View file

@ -11,12 +11,12 @@ cat(int fd)
while((n = read(fd, buf, sizeof(buf))) > 0) { while((n = read(fd, buf, sizeof(buf))) > 0) {
if (write(1, buf, n) != n) { if (write(1, buf, n) != n) {
printf("cat: write error\n"); fprintf(2, "cat: write error\n");
exit(1); exit(1);
} }
} }
if(n < 0){ if(n < 0){
printf("cat: read error\n"); fprintf(2, "cat: read error\n");
exit(1); exit(1);
} }
} }
@ -28,12 +28,12 @@ main(int argc, char *argv[])
if(argc <= 1){ if(argc <= 1){
cat(0); cat(0);
exit(1); exit(0);
} }
for(i = 1; i < argc; i++){ for(i = 1; i < argc; i++){
if((fd = open(argv[i], 0)) < 0){ if((fd = open(argv[i], 0)) < 0){
printf("cat: cannot open %s\n", argv[i]); fprintf(2, "cat: cannot open %s\n", argv[i]);
exit(1); exit(1);
} }
cat(fd); cat(fd);

333
user/grind.c Normal file
View file

@ -0,0 +1,333 @@
//
// run random system calls in parallel forever.
//
#include "kernel/param.h"
#include "kernel/types.h"
#include "kernel/stat.h"
#include "user/user.h"
#include "kernel/fs.h"
#include "kernel/fcntl.h"
#include "kernel/syscall.h"
#include "kernel/memlayout.h"
#include "kernel/riscv.h"
// from FreeBSD.
int
do_rand(unsigned long *ctx)
{
/*
* Compute x = (7^5 * x) mod (2^31 - 1)
* without overflowing 31 bits:
* (2^31 - 1) = 127773 * (7^5) + 2836
* From "Random number generators: good ones are hard to find",
* Park and Miller, Communications of the ACM, vol. 31, no. 10,
* October 1988, p. 1195.
*/
long hi, lo, x;
/* Transform to [1, 0x7ffffffe] range. */
x = (*ctx % 0x7ffffffe) + 1;
hi = x / 127773;
lo = x % 127773;
x = 16807 * lo - 2836 * hi;
if (x < 0)
x += 0x7fffffff;
/* Transform to [0, 0x7ffffffd] range. */
x--;
*ctx = x;
return (x);
}
unsigned long rand_next = 1;
int
rand(void)
{
return (do_rand(&rand_next));
}
void
go(int which_child)
{
int fd = -1;
static char buf[999];
char *break0 = sbrk(0);
uint64 iters = 0;
mkdir("grindir");
if(chdir("grindir") != 0){
printf("chdir grindir failed\n");
exit(1);
}
chdir("/");
while(1){
iters++;
if((iters % 500) == 0)
write(1, which_child?"B":"A", 1);
int what = rand() % 23;
if(what == 1){
close(open("grindir/../a", O_CREATE|O_RDWR));
} else if(what == 2){
close(open("grindir/../grindir/../b", O_CREATE|O_RDWR));
} else if(what == 3){
unlink("grindir/../a");
} else if(what == 4){
if(chdir("grindir") != 0){
printf("chdir grindir failed\n");
exit(1);
}
unlink("../b");
chdir("/");
} else if(what == 5){
close(fd);
fd = open("/grindir/../a", O_CREATE|O_RDWR);
} else if(what == 6){
close(fd);
fd = open("/./grindir/./../b", O_CREATE|O_RDWR);
} else if(what == 7){
write(fd, buf, sizeof(buf));
} else if(what == 8){
read(fd, buf, sizeof(buf));
} else if(what == 9){
mkdir("grindir/../a");
close(open("a/../a/./a", O_CREATE|O_RDWR));
unlink("a/a");
} else if(what == 10){
mkdir("/../b");
close(open("grindir/../b/b", O_CREATE|O_RDWR));
unlink("b/b");
} else if(what == 11){
unlink("b");
link("../grindir/./../a", "../b");
} else if(what == 12){
unlink("../grindir/../a");
link(".././b", "/grindir/../a");
} else if(what == 13){
int pid = fork();
if(pid == 0){
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 14){
int pid = fork();
if(pid == 0){
fork();
fork();
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 15){
sbrk(6011);
} else if(what == 16){
if(sbrk(0) > break0)
sbrk(-(sbrk(0) - break0));
} else if(what == 17){
int pid = fork();
if(pid == 0){
close(open("a", O_CREATE|O_RDWR));
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
if(chdir("../grindir/..") != 0){
printf("chdir failed\n");
exit(1);
}
kill(pid);
wait(0);
} else if(what == 18){
int pid = fork();
if(pid == 0){
kill(getpid());
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
wait(0);
} else if(what == 19){
int fds[2];
if(pipe(fds) < 0){
printf("grind: pipe failed\n");
exit(1);
}
int pid = fork();
if(pid == 0){
fork();
fork();
if(write(fds[1], "x", 1) != 1)
printf("grind: pipe write failed\n");
char c;
if(read(fds[0], &c, 1) != 1)
printf("grind: pipe read failed\n");
exit(0);
} else if(pid < 0){
printf("grind: fork failed\n");
exit(1);
}
close(fds[0]);
close(fds[1]);
wait(0);
} else if(what == 20){
int pid = fork();
if(pid == 0){
unlink("a");
mkdir("a");
chdir("a");
unlink("../a");
fd = open("x", O_CREATE|O_RDWR);
unlink("x");
exit(0);
} else if(pid < 0){
printf("fork failed\n");
exit(1);
}
wait(0);
} else if(what == 21){
unlink("c");
// should always succeed. check that there are free i-nodes,
// file descriptors, blocks.
int fd1 = open("c", O_CREATE|O_RDWR);
if(fd1 < 0){
printf("create c failed\n");
exit(1);
}
if(write(fd1, "x", 1) != 1){
printf("write c failed\n");
exit(1);
}
struct stat st;
if(fstat(fd1, &st) != 0){
printf("fstat failed\n");
exit(1);
}
if(st.size != 1){
printf("fstat reports wrong size %d\n", (int)st.size);
exit(1);
}
if(st.ino > 200){
printf("fstat reports crazy i-number %d\n", st.ino);
exit(1);
}
close(fd1);
unlink("c");
} else if(what == 22){
// echo hi | cat
int aa[2], bb[2];
if(pipe(aa) < 0){
fprintf(2, "pipe failed\n");
exit(1);
}
if(pipe(bb) < 0){
fprintf(2, "pipe failed\n");
exit(1);
}
int pid1 = fork();
if(pid1 == 0){
close(bb[0]);
close(bb[1]);
close(aa[0]);
close(1);
if(dup(aa[1]) != 1){
fprintf(2, "dup failed\n");
exit(1);
}
close(aa[1]);
char *args[3] = { "echo", "hi", 0 };
exec("grindir/../echo", args);
fprintf(2, "echo: not found\n");
exit(2);
} else if(pid1 < 0){
fprintf(2, "fork failed\n");
exit(3);
}
int pid2 = fork();
if(pid2 == 0){
close(aa[1]);
close(bb[0]);
close(0);
if(dup(aa[0]) != 0){
fprintf(2, "dup failed\n");
exit(4);
}
close(aa[0]);
close(1);
if(dup(bb[1]) != 1){
fprintf(2, "dup failed\n");
exit(5);
}
close(bb[1]);
char *args[2] = { "cat", 0 };
exec("/cat", args);
fprintf(2, "cat: not found\n");
exit(6);
} else if(pid2 < 0){
fprintf(2, "fork failed\n");
exit(7);
}
close(aa[0]);
close(aa[1]);
close(bb[1]);
char buf[3] = { 0, 0, 0 };
read(bb[0], buf+0, 1);
read(bb[0], buf+1, 1);
close(bb[0]);
int st1, st2;
wait(&st1);
wait(&st2);
if(st1 != 0 || st2 != 0 || strcmp(buf, "hi") != 0){
printf("exec pipeline failed %d %d \"%s\"\n", st1, st2, buf);
exit(1);
}
}
}
}
int
main()
{
unlink("a");
unlink("b");
int pid1 = fork();
if(pid1 < 0){
printf("grind: fork failed\n");
exit(1);
}
if(pid1 == 0){
rand_next = 31;
go(0);
exit(0);
}
int pid2 = fork();
if(pid2 < 0){
printf("grind: fork failed\n");
exit(1);
}
if(pid2 == 0){
rand_next = 7177;
go(1);
exit(0);
}
int st1 = -1;
wait(&st1);
if(st1 != 0){
kill(pid1);
kill(pid2);
}
int st2 = -1;
wait(&st2);
exit(0);
}

View file

@ -386,7 +386,7 @@ parseredirs(struct cmd *cmd, char **ps, char *es)
cmd = redircmd(cmd, q, eq, O_RDONLY, 0); cmd = redircmd(cmd, q, eq, O_RDONLY, 0);
break; break;
case '>': case '>':
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1); cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE|O_TRUNC, 1);
break; break;
case '+': // >> case '+': // >>
cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1); cmd = redircmd(cmd, q, eq, O_WRONLY|O_CREATE, 1);

View file

@ -103,7 +103,34 @@ memmove(void *vdst, const void *vsrc, int n)
dst = vdst; dst = vdst;
src = vsrc; src = vsrc;
if (src > dst) {
while(n-- > 0) while(n-- > 0)
*dst++ = *src++; *dst++ = *src++;
} else {
dst += n;
src += n;
while(n-- > 0)
*--dst = *--src;
}
return vdst; return vdst;
} }
int
memcmp(const void *s1, const void *s2, uint n)
{
const char *p1 = s1, *p2 = s2;
while (n-- > 0) {
if (*p1 != *p2) {
return *p1 - *p2;
}
p1++;
p2++;
}
return 0;
}
void *
memcpy(void *dst, const void *src, uint n)
{
return memmove(dst, src, n);
}

View file

@ -38,3 +38,5 @@ void* memset(void*, int, uint);
void* malloc(uint); void* malloc(uint);
void free(void*); void free(void*);
int atoi(const char*); int atoi(const char*);
int memcmp(const void *, const void *, uint);
void *memcpy(void *, const void *, uint);

View file

@ -22,6 +22,352 @@
char buf[BUFSZ]; char buf[BUFSZ];
char name[3]; char name[3];
// what if you pass ridiculous pointers to system calls
// that read user memory with copyin?
void
copyin(char *s)
{
uint64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
for(int ai = 0; ai < 2; ai++){
uint64 addr = addrs[ai];
int fd = open("copyin1", O_CREATE|O_WRONLY);
if(fd < 0){
printf("open(copyin1) failed\n");
exit(1);
}
int n = write(fd, (void*)addr, 8192);
if(n >= 0){
printf("write(fd, %p, 8192) returned %d, not -1\n", addr, n);
exit(1);
}
close(fd);
unlink("copyin1");
n = write(1, (char*)addr, 8192);
if(n > 0){
printf("write(1, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
int fds[2];
if(pipe(fds) < 0){
printf("pipe() failed\n");
exit(1);
}
n = write(fds[1], (char*)addr, 8192);
if(n > 0){
printf("write(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous pointers to system calls
// that write user memory with copyout?
void
copyout(char *s)
{
uint64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
for(int ai = 0; ai < 2; ai++){
uint64 addr = addrs[ai];
int fd = open("README", 0);
if(fd < 0){
printf("open(README) failed\n");
exit(1);
}
int n = read(fd, (void*)addr, 8192);
if(n > 0){
printf("read(fd, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fd);
int fds[2];
if(pipe(fds) < 0){
printf("pipe() failed\n");
exit(1);
}
n = write(fds[1], "x", 1);
if(n != 1){
printf("pipe write failed\n");
exit(1);
}
n = read(fds[0], (void*)addr, 8192);
if(n > 0){
printf("read(pipe, %p, 8192) returned %d, not -1 or 0\n", addr, n);
exit(1);
}
close(fds[0]);
close(fds[1]);
}
}
// what if you pass ridiculous string pointers to system calls?
void
copyinstr1(char *s)
{
uint64 addrs[] = { 0x80000000LL, 0xffffffffffffffff };
for(int ai = 0; ai < 2; ai++){
uint64 addr = addrs[ai];
int fd = open((char *)addr, O_CREATE|O_WRONLY);
if(fd >= 0){
printf("open(%p) returned %d, not -1\n", addr, fd);
exit(1);
}
}
}
// what if a string system call argument is exactly the size
// of the kernel buffer it is copied into, so that the null
// would fall just beyond the end of the kernel buffer?
void
copyinstr2(char *s)
{
char b[MAXPATH+1];
for(int i = 0; i < MAXPATH; i++)
b[i] = 'x';
b[MAXPATH] = '\0';
int ret = unlink(b);
if(ret != -1){
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
if(fd != -1){
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
if(ret != -1){
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = { "xx", 0 };
ret = exec(b, args);
if(ret != -1){
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
int pid = fork();
if(pid < 0){
printf("fork failed\n");
exit(1);
}
if(pid == 0){
static char big[PGSIZE+1];
for(int i = 0; i < PGSIZE; i++)
big[i] = 'x';
big[PGSIZE] = '\0';
char *args2[] = { big, big, big, 0 };
ret = exec("echo", args2);
if(ret != -1){
printf("exec(echo, BIG) returned %d, not -1\n", fd);
exit(1);
}
exit(747); // OK
}
int st = 0;
wait(&st);
if(st != 747){
printf("exec(echo, BIG) succeeded, should have failed\n");
exit(1);
}
}
// what if a string argument crosses over the end of last user page?
void
copyinstr3(char *s)
{
sbrk(8192);
uint64 top = (uint64) sbrk(0);
if((top % PGSIZE) != 0){
sbrk(PGSIZE - (top % PGSIZE));
}
top = (uint64) sbrk(0);
if(top % PGSIZE){
printf("oops\n");
exit(1);
}
char *b = (char *) (top - 1);
*b = 'x';
int ret = unlink(b);
if(ret != -1){
printf("unlink(%s) returned %d, not -1\n", b, ret);
exit(1);
}
int fd = open(b, O_CREATE | O_WRONLY);
if(fd != -1){
printf("open(%s) returned %d, not -1\n", b, fd);
exit(1);
}
ret = link(b, b);
if(ret != -1){
printf("link(%s, %s) returned %d, not -1\n", b, b, ret);
exit(1);
}
char *args[] = { "xx", 0 };
ret = exec(b, args);
if(ret != -1){
printf("exec(%s) returned %d, not -1\n", b, fd);
exit(1);
}
}
// test O_TRUNC.
void
truncate1(char *s)
{
char buf[32];
unlink("truncfile");
int fd1 = open("truncfile", O_CREATE|O_WRONLY|O_TRUNC);
write(fd1, "abcd", 4);
close(fd1);
int fd2 = open("truncfile", O_RDONLY);
int n = read(fd2, buf, sizeof(buf));
if(n != 4){
printf("%s: read %d bytes, wanted 4\n", s, n);
exit(1);
}
fd1 = open("truncfile", O_WRONLY|O_TRUNC);
int fd3 = open("truncfile", O_RDONLY);
n = read(fd3, buf, sizeof(buf));
if(n != 0){
printf("aaa fd3=%d\n", fd3);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
if(n != 0){
printf("bbb fd2=%d\n", fd2);
printf("%s: read %d bytes, wanted 0\n", s, n);
exit(1);
}
write(fd1, "abcdef", 6);
n = read(fd3, buf, sizeof(buf));
if(n != 6){
printf("%s: read %d bytes, wanted 6\n", s, n);
exit(1);
}
n = read(fd2, buf, sizeof(buf));
if(n != 2){
printf("%s: read %d bytes, wanted 2\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
close(fd3);
}
// write to an open FD whose file has just been truncated.
// this causes a write at an offset beyond the end of the file.
// such writes fail on xv6 (unlike POSIX) but at least
// they don't crash.
void
truncate2(char *s)
{
unlink("truncfile");
int fd1 = open("truncfile", O_CREATE|O_TRUNC|O_WRONLY);
write(fd1, "abcd", 4);
int fd2 = open("truncfile", O_TRUNC|O_WRONLY);
int n = write(fd1, "x", 1);
if(n != -1){
printf("%s: write returned %d, expected -1\n", s, n);
exit(1);
}
unlink("truncfile");
close(fd1);
close(fd2);
}
void
truncate3(char *s)
{
int pid, xstatus;
close(open("truncfile", O_CREATE|O_TRUNC|O_WRONLY));
pid = fork();
if(pid < 0){
printf("%s: fork failed\n", s);
exit(1);
}
if(pid == 0){
for(int i = 0; i < 100; i++){
char buf[32];
int fd = open("truncfile", O_WRONLY);
if(fd < 0){
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "1234567890", 10);
if(n != 10){
printf("%s: write got %d, expected 10\n", s, n);
exit(1);
}
close(fd);
fd = open("truncfile", O_RDONLY);
read(fd, buf, sizeof(buf));
close(fd);
}
exit(0);
}
for(int i = 0; i < 150; i++){
int fd = open("truncfile", O_CREATE|O_WRONLY|O_TRUNC);
if(fd < 0){
printf("%s: open failed\n", s);
exit(1);
}
int n = write(fd, "xxx", 3);
if(n != 3){
printf("%s: write got %d, expected 3\n", s, n);
exit(1);
}
close(fd);
}
wait(&xstatus);
unlink("truncfile");
exit(xstatus);
}
// does chdir() call iput(p->cwd) in a transaction? // does chdir() call iput(p->cwd) in a transaction?
void void
iputtest(char *s) iputtest(char *s)
@ -1038,11 +1384,15 @@ concreate(char *s)
close(open(file, 0)); close(open(file, 0));
close(open(file, 0)); close(open(file, 0));
close(open(file, 0)); close(open(file, 0));
close(open(file, 0));
close(open(file, 0));
} else { } else {
unlink(file); unlink(file);
unlink(file); unlink(file);
unlink(file); unlink(file);
unlink(file); unlink(file);
unlink(file);
unlink(file);
} }
if(pid == 0) if(pid == 0)
exit(0); exit(0);
@ -1106,7 +1456,7 @@ bigdir(char *s)
name[2] = '0' + (i % 64); name[2] = '0' + (i % 64);
name[3] = '\0'; name[3] = '\0';
if(link("bd", name) != 0){ if(link("bd", name) != 0){
printf("%s: bigdir link failed\n", s); printf("%s: bigdir link(bd, %s) failed\n", s, name);
exit(1); exit(1);
} }
} }
@ -1335,8 +1685,8 @@ bigfile(char *s)
enum { N = 20, SZ=600 }; enum { N = 20, SZ=600 };
int fd, i, total, cc; int fd, i, total, cc;
unlink("bigfile"); unlink("bigfile.dat");
fd = open("bigfile", O_CREATE | O_RDWR); fd = open("bigfile.dat", O_CREATE | O_RDWR);
if(fd < 0){ if(fd < 0){
printf("%s: cannot create bigfile", s); printf("%s: cannot create bigfile", s);
exit(1); exit(1);
@ -1350,7 +1700,7 @@ bigfile(char *s)
} }
close(fd); close(fd);
fd = open("bigfile", 0); fd = open("bigfile.dat", 0);
if(fd < 0){ if(fd < 0){
printf("%s: cannot open bigfile\n", s); printf("%s: cannot open bigfile\n", s);
exit(1); exit(1);
@ -1379,7 +1729,7 @@ bigfile(char *s)
printf("%s: read bigfile wrong total\n", s); printf("%s: read bigfile wrong total\n", s);
exit(1); exit(1);
} }
unlink("bigfile"); unlink("bigfile.dat");
} }
void void
@ -1418,6 +1768,14 @@ fourteen(char *s)
printf("%s: mkdir 12345678901234/123456789012345 succeeded!\n", s); printf("%s: mkdir 12345678901234/123456789012345 succeeded!\n", s);
exit(1); exit(1);
} }
// clean up
unlink("123456789012345/12345678901234");
unlink("12345678901234/12345678901234");
unlink("12345678901234/12345678901234/12345678901234");
unlink("123456789012345/123456789012345/123456789012345");
unlink("12345678901234/123456789012345");
unlink("12345678901234");
} }
void void
@ -1512,7 +1870,8 @@ dirfile(char *s)
close(fd); close(fd);
} }
// test that iput() is called at the end of _namei() // test that iput() is called at the end of _namei().
// also tests empty file names.
void void
iref(char *s) iref(char *s)
{ {
@ -1539,6 +1898,12 @@ iref(char *s)
unlink("xx"); unlink("xx");
} }
// clean up
for(i = 0; i < NINODE + 1; i++){
chdir("..");
unlink("irefd");
}
chdir("/"); chdir("/");
} }
@ -2087,6 +2452,28 @@ badarg(char *s)
exit(0); exit(0);
} }
//
// use sbrk() to count how many free physical memory pages there are.
//
int
countfree()
{
uint64 sz0 = (uint64)sbrk(0);
int n = 0;
while(1){
uint64 a = (uint64) sbrk(4096);
if(a == 0xffffffffffffffff){
break;
}
// modify the memory to make sure it's really allocated.
*(char *)(a - 1) = 1;
n += 1;
}
sbrk(-((uint64)sbrk(0) - sz0));
return n;
}
// run each test in its own process. run returns 1 if child's exit() // run each test in its own process. run returns 1 if child's exit()
// indicates success. // indicates success.
int int
@ -2105,9 +2492,9 @@ run(void f(char *), char *s) {
} else { } else {
wait(&xstatus); wait(&xstatus);
if(xstatus != 0) if(xstatus != 0)
printf("FAILED\n", s); printf("FAILED\n");
else else
printf("OK\n", s); printf("OK\n");
return xstatus == 0; return xstatus == 0;
} }
} }
@ -2115,15 +2502,30 @@ run(void f(char *), char *s) {
int int
main(int argc, char *argv[]) main(int argc, char *argv[])
{ {
char *n = 0; int continuous = 0;
if(argc > 1) { char *justone = 0;
n = argv[1];
if(argc == 2 && strcmp(argv[1], "-c") == 0){
continuous = 1;
} else if(argc == 2 && argv[1][0] != '-'){
justone = argv[1];
} else if(argc > 1){
printf("Usage: usertests [-c] [testname]\n");
exit(1);
} }
struct test { struct test {
void (*f)(char *); void (*f)(char *);
char *s; char *s;
} tests[] = { } tests[] = {
{copyin, "copyin"},
{copyout, "copyout"},
{copyinstr1, "copyinstr1"},
{copyinstr2, "copyinstr2"},
{copyinstr3, "copyinstr3"},
{truncate1, "truncate1"},
{truncate2, "truncate2"},
{truncate3, "truncate3"},
{reparent2, "reparent2"}, {reparent2, "reparent2"},
{pgbug, "pgbug" }, {pgbug, "pgbug" },
{sbrkbugs, "sbrkbugs" }, {sbrkbugs, "sbrkbugs" },
@ -2174,24 +2576,47 @@ main(int argc, char *argv[])
{ 0, 0}, { 0, 0},
}; };
printf("usertests starting\n"); if(continuous){
printf("continuous usertests starting\n");
if(open("usertests.ran", 0) >= 0){ while(1){
printf("already ran user tests -- rebuild fs.img (rm fs.img; make fs.img)\n"); int fail = 0;
int free0 = countfree();
for (struct test *t = tests; t->s != 0; t++) {
if(!run(t->f, t->s)){
fail = 1;
break;
}
}
if(fail){
printf("SOME TESTS FAILED\n");
exit(1); exit(1);
} }
close(open("usertests.ran", O_CREATE)); int free1 = countfree();
if(free1 < free0){
printf("FAILED -- lost some free pages\n");
exit(1);
}
}
}
printf("usertests starting\n");
int free0 = countfree();
int fail = 0; int fail = 0;
for (struct test *t = tests; t->s != 0; t++) { for (struct test *t = tests; t->s != 0; t++) {
if((n == 0) || strcmp(t->s, n) == 0) { if((justone == 0) || strcmp(t->s, justone) == 0) {
if(!run(t->f, t->s)) if(!run(t->f, t->s))
fail = 1; fail = 1;
} }
} }
if(!fail)
printf("ALL TESTS PASSED\n"); if(fail){
else
printf("SOME TESTS FAILED\n"); printf("SOME TESTS FAILED\n");
exit(1); // not reached. exit(1);
} else if(countfree() < free0){
printf("FAILED -- lost some free pages\n");
exit(1);
} else {
printf("ALL TESTS PASSED\n");
exit(0);
}
} }