// // driver for qemu's virtio disk device. // uses qemu's mmio interface to virtio. // qemu presents a "legacy" virtio interface. // // qemu ... -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0 // #include "types.h" #include "riscv.h" #include "defs.h" #include "param.h" #include "memlayout.h" #include "spinlock.h" #include "sleeplock.h" #include "fs.h" #include "buf.h" #include "virtio.h" // the address of virtio mmio register r. #define R(r) ((volatile uint32 *)(VIRTIO0 + (r))) static struct disk { // the virtio driver and device mostly communicate through a set of // structures in RAM. pages[] allocates that memory. pages[] is a // global (instead of calls to kalloc()) because it must consist of // two contiguous pages of page-aligned physical memory. char pages[2*PGSIZE]; // pages[] is divided into three regions (descriptors, avail, and // used), as explained in Section 2.6 of the virtio specification // for the legacy interface. // https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf // the first region of pages[] is a set (not a ring) of DMA // descriptors, with which the driver tells the device where to read // and write individual disk operations. there are NUM descriptors. // most commands consist of a "chain" (a linked list) of a couple of // these descriptors. // points into pages[]. struct virtq_desc *desc; // next is a ring in which the driver writes descriptor numbers // that the driver would like the device to process. it only // includes the head descriptor of each chain. the ring has // NUM elements. // points into pages[]. struct virtq_avail *avail; // finally a ring in which the device writes descriptor numbers that // the device has finished processing (just the head of each chain). // there are NUM used ring entries. // points into pages[]. struct virtq_used *used; // our own book-keeping. char free[NUM]; // is a descriptor free? uint16 used_idx; // we've looked this far in used[2..NUM]. // track info about in-flight operations, // for use when completion interrupt arrives. // indexed by first descriptor index of chain. struct { struct buf *b; char status; } info[NUM]; struct spinlock vdisk_lock; } __attribute__ ((aligned (PGSIZE))) disk; void virtio_disk_init(void) { uint32 status = 0; initlock(&disk.vdisk_lock, "virtio_disk"); if(*R(VIRTIO_MMIO_MAGIC_VALUE) != 0x74726976 || *R(VIRTIO_MMIO_VERSION) != 1 || *R(VIRTIO_MMIO_DEVICE_ID) != 2 || *R(VIRTIO_MMIO_VENDOR_ID) != 0x554d4551){ panic("could not find virtio disk"); } status |= VIRTIO_CONFIG_S_ACKNOWLEDGE; *R(VIRTIO_MMIO_STATUS) = status; status |= VIRTIO_CONFIG_S_DRIVER; *R(VIRTIO_MMIO_STATUS) = status; // negotiate features uint64 features = *R(VIRTIO_MMIO_DEVICE_FEATURES); features &= ~(1 << VIRTIO_BLK_F_RO); features &= ~(1 << VIRTIO_BLK_F_SCSI); features &= ~(1 << VIRTIO_BLK_F_CONFIG_WCE); features &= ~(1 << VIRTIO_BLK_F_MQ); features &= ~(1 << VIRTIO_F_ANY_LAYOUT); features &= ~(1 << VIRTIO_RING_F_EVENT_IDX); features &= ~(1 << VIRTIO_RING_F_INDIRECT_DESC); *R(VIRTIO_MMIO_DRIVER_FEATURES) = features; // tell device that feature negotiation is complete. status |= VIRTIO_CONFIG_S_FEATURES_OK; *R(VIRTIO_MMIO_STATUS) = status; // tell device we're completely ready. status |= VIRTIO_CONFIG_S_DRIVER_OK; *R(VIRTIO_MMIO_STATUS) = status; *R(VIRTIO_MMIO_GUEST_PAGE_SIZE) = PGSIZE; // initialize queue 0. *R(VIRTIO_MMIO_QUEUE_SEL) = 0; uint32 max = *R(VIRTIO_MMIO_QUEUE_NUM_MAX); if(max == 0) panic("virtio disk has no queue 0"); if(max < NUM) panic("virtio disk max queue too short"); *R(VIRTIO_MMIO_QUEUE_NUM) = NUM; memset(disk.pages, 0, sizeof(disk.pages)); *R(VIRTIO_MMIO_QUEUE_PFN) = ((uint64)disk.pages) >> PGSHIFT; // desc = pages -- num * virtq_desc // avail = pages + 0x40 -- 2 * uint16, then num * uint16 // used = pages + 4096 -- 2 * uint16, then num * vRingUsedElem disk.desc = (struct virtq_desc *) disk.pages; disk.avail = (struct virtq_avail *)(disk.pages + NUM*sizeof(struct virtq_desc)); disk.used = (struct virtq_used *) (disk.pages + PGSIZE); // all NUM descriptors start out unused. for(int i = 0; i < NUM; i++) disk.free[i] = 1; // plic.c and trap.c arrange for interrupts from VIRTIO0_IRQ. } // find a free descriptor, mark it non-free, return its index. static int alloc_desc() { for(int i = 0; i < NUM; i++){ if(disk.free[i]){ disk.free[i] = 0; return i; } } return -1; } // mark a descriptor as free. static void free_desc(int i) { if(i >= NUM) panic("free_desc 1"); if(disk.free[i]) panic("free_desc 2"); disk.desc[i].addr = 0; disk.desc[i].len = 0; disk.desc[i].flags = 0; disk.desc[i].next = 0; disk.free[i] = 1; wakeup(&disk.free[0]); } // free a chain of descriptors. static void free_chain(int i) { while(1){ int flag = disk.desc[i].flags; int nxt = disk.desc[i].next; free_desc(i); if(flag & VRING_DESC_F_NEXT) i = nxt; else break; } } // allocate three descriptors (they need not be contiguous). // disk transfers always use three descriptors. static int alloc3_desc(int *idx) { for(int i = 0; i < 3; i++){ idx[i] = alloc_desc(); if(idx[i] < 0){ for(int j = 0; j < i; j++) free_desc(idx[j]); return -1; } } return 0; } void virtio_disk_rw(struct buf *b, int write) { uint64 sector = b->blockno * (BSIZE / 512); acquire(&disk.vdisk_lock); // the spec's Section 5.2 says that legacy block operations use // three descriptors: one for type/reserved/sector, one for the // data, one for a 1-byte status result. // allocate the three descriptors. int idx[3]; while(1){ if(alloc3_desc(idx) == 0) { break; } sleep(&disk.free[0], &disk.vdisk_lock); } // format the three descriptors. // qemu's virtio-blk.c reads them. struct virtio_blk_req buf0; if(write) buf0.type = VIRTIO_BLK_T_OUT; // write the disk else buf0.type = VIRTIO_BLK_T_IN; // read the disk buf0.reserved = 0; buf0.sector = sector; // buf0 is on a kernel stack, which is not direct mapped, // thus the call to kvmpa(). disk.desc[idx[0]].addr = (uint64) kvmpa((uint64) &buf0); disk.desc[idx[0]].len = sizeof(buf0); disk.desc[idx[0]].flags = VRING_DESC_F_NEXT; disk.desc[idx[0]].next = idx[1]; disk.desc[idx[1]].addr = (uint64) b->data; disk.desc[idx[1]].len = BSIZE; if(write) disk.desc[idx[1]].flags = 0; // device reads b->data else disk.desc[idx[1]].flags = VRING_DESC_F_WRITE; // device writes b->data disk.desc[idx[1]].flags |= VRING_DESC_F_NEXT; disk.desc[idx[1]].next = idx[2]; disk.info[idx[0]].status = 0xff; // device writes 0 on success disk.desc[idx[2]].addr = (uint64) &disk.info[idx[0]].status; disk.desc[idx[2]].len = 1; disk.desc[idx[2]].flags = VRING_DESC_F_WRITE; // device writes the status disk.desc[idx[2]].next = 0; // record struct buf for virtio_disk_intr(). b->disk = 1; disk.info[idx[0]].b = b; // tell the device the first index in our chain of descriptors. disk.avail->ring[disk.avail->idx % NUM] = idx[0]; __sync_synchronize(); // tell the device another avail ring entry is available. disk.avail->idx += 1; // not % NUM ... __sync_synchronize(); *R(VIRTIO_MMIO_QUEUE_NOTIFY) = 0; // value is queue number // Wait for virtio_disk_intr() to say request has finished. while(b->disk == 1) { sleep(b, &disk.vdisk_lock); } disk.info[idx[0]].b = 0; free_chain(idx[0]); release(&disk.vdisk_lock); } void virtio_disk_intr() { acquire(&disk.vdisk_lock); // the device won't raise another interrupt until we tell it // we've seen this interrupt, which the following line does. // this may race with the device writing new entries to // the "used" ring, in which case we may process the new // completion entries in this interrupt, and have nothing to do // in the next interrupt, which is harmless. *R(VIRTIO_MMIO_INTERRUPT_ACK) = *R(VIRTIO_MMIO_INTERRUPT_STATUS) & 0x3; __sync_synchronize(); // the device increments disk.used->idx when it // adds an entry to the used ring. while(disk.used_idx != disk.used->idx){ __sync_synchronize(); int id = disk.used->ring[disk.used_idx % NUM].id; if(disk.info[id].status != 0) panic("virtio_disk_intr status"); struct buf *b = disk.info[id].b; b->disk = 0; // disk is done with buf wakeup(b); disk.used_idx += 1; } release(&disk.vdisk_lock); }