#include "types.h"
#include "defs.h"
#include "param.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "x86.h"

static void startothers(void);
static void mpmain(void)  __attribute__((noreturn));
extern pde_t *kpgdir;

// Bootstrap processor starts running C code here.
// Allocate a real stack and switch to it, first
// doing some setup required for memory allocator to work.
int
main(void)
{
  kvmalloc();      // kernel page table
  mpinit();        // collect info about this machine
  lapicinit(mpbcpu());
  seginit();       // set up segments
  cprintf("\ncpu%d: starting xv6\n\n", cpu->id);
  picinit();       // interrupt controller
  ioapicinit();    // another interrupt controller
  consoleinit();   // I/O devices & their interrupts
  uartinit();      // serial port
  pinit();         // process table
  tvinit();        // trap vectors
  binit();         // buffer cache
  fileinit();      // file table
  iinit();         // inode cache
  ideinit();       // disk
  if(!ismp)
    timerinit();   // uniprocessor timer
  startothers();    // start other processors (must come before kinit)
  kinit();         // initialize memory allocator
  userinit();      // first user process  (must come after kinit)
  // Finish setting up this processor in mpmain.
  mpmain();
}

// Other CPUs jump here from entryother.S.
static void
mpenter(void)
{
  switchkvm(); 
  seginit();
  lapicinit(cpunum());
  mpmain();
}

// Common CPU setup code.
static void
mpmain(void)
{
  cprintf("cpu%d: starting\n", cpu->id);
  idtinit();       // load idt register
  xchg(&cpu->started, 1); // tell startothers() we're up
  scheduler();     // start running processes
}

pde_t entrypgdir[];  // For entry.S

// Start the non-boot (AP) processors.
static void
startothers(void)
{
  extern uchar _binary_entryother_start[], _binary_entryother_size[];
  uchar *code;
  struct cpu *c;
  char *stack;

  // Write entry code to unused memory at 0x7000.
  // The linker has placed the image of entryother.S in
  // _binary_entryother_start.
  code = p2v(0x7000);
  memmove(code, _binary_entryother_start, (uint)_binary_entryother_size);

  for(c = cpus; c < cpus+ncpu; c++){
    if(c == cpus+cpunum())  // We've started already.
      continue;

    // Tell entryother.S what stack to use, where to enter, and what 
    // pgdir to use. We cannot use kpgdir yet, because the AP processor
    // is running in low  memory, so we use entrypgdir for the APs too.
    // kalloc can return addresses above 4Mbyte (the machine may have 
    // much more physical memory than 4Mbyte), which aren't mapped by
    // entrypgdir, so we must allocate a stack using enter_alloc(); 
    // this introduces the constraint that xv6 cannot use kalloc until 
    // after these last enter_alloc invocations.
    stack = enter_alloc();
    *(void**)(code-4) = stack + KSTACKSIZE;
    *(void**)(code-8) = mpenter;
    *(int**)(code-12) = (void *) v2p(entrypgdir);

    lapicstartap(c->id, v2p(code));

    // wait for cpu to finish mpmain()
    while(c->started == 0)
      ;
  }
}

// Boot page table used in entry.S and entryother.S.
// Page directories (and page tables), must start on a page boundary,
// hence the "__aligned__" attribute.  
// Use PTE_PS in page directory entry to enable 4Mbyte pages.
__attribute__((__aligned__(PGSIZE)))
pde_t entrypgdir[NPDENTRIES] = {
  // Map VA's [0, 4MB) to PA's [0, 4MB)
  [0] = (0) + PTE_P + PTE_W + PTE_PS,
  // Map VA's [KERNBASE, KERNBASE+4MB) to PA's [0, 4MB)
  [KERNBASE>>PDXSHIFT] = (0) + PTE_P + PTE_W + PTE_PS,
};

//PAGEBREAK!
// Blank page.