xv6-65oo2/vm.c
2018-10-02 09:06:41 -04:00

446 lines
11 KiB
C

#include "param.h"
#include "types.h"
#include "defs.h"
#include "x86.h"
#include "msr.h"
#include "memlayout.h"
#include "mmu.h"
#include "proc.h"
#include "elf.h"
#include "traps.h"
extern char data[]; // defined by kernel.ld
void sysentry(void);
static pde_t *kpml4; // kernel address space, used by scheduler and bootup
// Bootstrap GDT. Used by boot.S but defined in C
// Map "logical" addresses to virtual addresses using identity map.
// Cannot share a CODE descriptor for both kernel and user
// because it would have to have DPL_USR, but the CPU forbids
// an interrupt from CPL=0 to DPL=3.
struct segdesc bootgdt[NSEGS] = {
[0] = SEGDESC(0, 0, 0), // null
[1] = SEGDESC(0, 0xfffff, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // 32-bit kernel code
[2] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(0)|SEG_P|SEG_L|SEG_G), // 64-bit kernel code
[3] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(0)|SEG_P|SEG_D|SEG_G), // kernel data
// The order of the user data and user code segments is
// important for syscall instructions. See initseg.
[6] = SEGDESC(0, 0xfffff, SEG_W|SEG_S|SEG_DPL(3)|SEG_P|SEG_D|SEG_G), // 64-bit user data
[7] = SEGDESC(0, 0, SEG_R|SEG_CODE|SEG_S|SEG_DPL(3)|SEG_P|SEG_L|SEG_G), // 64-bit user code
};
// Set up CPU's kernel segment descriptors.
// Run once on entry on each CPU.
void
seginit(void)
{
struct cpu *c;
struct desctr dtr;
c = mycpu();
memmove(c->gdt, bootgdt, sizeof bootgdt);
dtr.limit = sizeof(c->gdt)-1;
dtr.base = (uint64) c->gdt;
lgdt((void *)&dtr.limit);
// When executing a syscall instruction the CPU sets the SS selector
// to (star >> 32) + 8 and the CS selector to (star >> 32).
// When executing a sysret instruction the CPU sets the SS selector
// to (star >> 48) + 8 and the CS selector to (star >> 48) + 16.
uint64 star = ((((uint64)UCSEG|0x3)- 16)<<48)|((uint64)(KCSEG)<<32);
writemsr(MSR_STAR, star);
writemsr(MSR_LSTAR, (uint64)&sysentry);
writemsr(MSR_SFMASK, FL_TF | FL_IF);
// Initialize cpu-local storage.
writegs(KDSEG);
writemsr(MSR_GS_BASE, (uint64)c);
writemsr(MSR_GS_KERNBASE, (uint64)c);
}
// Return the address of the PTE in page table pgdir
// that corresponds to virtual address va. If alloc!=0,
// create any required page table pages.
static pte_t *
walkpgdir(pde_t *pml4, const void *va, int alloc)
{
pde_t *pgtab = pml4;
pde_t *pte;
int level;
for (level = L_PML4; level > 0; level--) {
pte = &pgtab[PX(level, va)];
if(*pte & PTE_P)
pgtab = (pte_t*)P2V(PTE_ADDR(*pte));
else {
if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
return 0;
memset(pgtab, 0, PGSIZE);
*pte = V2P(pgtab) | PTE_P | PTE_W | PTE_U;
}
}
return &pgtab[PX(level, va)];
}
// Create PTEs for virtual addresses starting at va that refer to
// physical addresses starting at pa. va and size might not
// be page-aligned.
static int
mappages(pde_t *pgdir, void *va, uint64 size, uint64 pa, int perm)
{
char *a, *last;
pte_t *pte;
a = (char*)PGROUNDDOWN((uint64)va);
last = (char*)PGROUNDDOWN(((uint64)va) + size - 1);
for(;;){
if((pte = walkpgdir(pgdir, a, 1)) == 0)
return -1;
if(*pte & PTE_P)
panic("remap");
*pte = pa | perm | PTE_P;
if(a == last)
break;
a += PGSIZE;
pa += PGSIZE;
}
return 0;
}
// There is one page table per process, plus one that's used when
// a CPU is not running any process (kpml4). The kernel uses the
// current process's page table during system calls and interrupts;
// page protection bits prevent user code from using the kernel's
// mappings.
//
// setupkvm() and exec() set up every page table like this:
//
// 0..KERNBASE: user memory (text+data+stack+heap), mapped to
// phys memory allocated by the kernel
// KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
// KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
// for the kernel's instructions and r/o data
// data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP,
// rw data + free physical memory
// 0xfe000000..0: mapped direct (devices such as ioapic)
//
// The kernel allocates physical memory for its heap and for user memory
// between V2P(end) and the end of physical memory (PHYSTOP)
// (directly addressable from end..P2V(PHYSTOP)).
// This table defines the kernel's mappings, which are present in
// every process's page table.
static struct kmap {
void *virt;
uint64 phys_start;
uint64 phys_end;
int perm;
} kmap[] = {
{ (void*)KERNBASE, 0, EXTMEM, PTE_W}, // I/O space
{ (void*)KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kern text+rodata
{ (void*)data, V2P(data), PHYSTOP, PTE_W}, // kern data+memory
{ (void*)P2V(DEVSPACE), DEVSPACE, DEVSPACETOP, PTE_W}, // more devices
};
// Set up kernel part of a page table.
pde_t*
setupkvm(void)
{
pde_t *pml4;
struct kmap *k;
if((pml4 = (pde_t*)kalloc()) == 0)
return 0;
memset(pml4, 0, PGSIZE);
if (PHYSTOP > DEVSPACE)
panic("PHYSTOP too high");
for(k = kmap; k < &kmap[NELEM(kmap)]; k++) {
if(mappages(pml4, k->virt, k->phys_end - k->phys_start,
(uint)k->phys_start, k->perm) < 0) {
freevm(pml4, 0);
return 0;
}
}
return pml4;
}
// Allocate one page table for the machine for the kernel address
// space for scheduler processes.
void
kvmalloc(void)
{
kpml4 = setupkvm();
switchkvm();
}
// Switch h/w page table register to the kernel-only page table,
// for when no process is running.
void
switchkvm(void)
{
lcr3(V2P(kpml4)); // switch to the kernel page table
}
// Switch TSS and h/w page table to correspond to process p.
void
switchuvm(struct proc *p)
{
struct desctr dtr;
struct cpu *c;
if(p == 0)
panic("switchuvm: no process");
if(p->kstack == 0)
panic("switchuvm: no kstack");
if(p->pgdir == 0)
panic("switchuvm: no pgdir");
pushcli();
c = mycpu();
uint64 base = (uint64) &(c->ts);
c->gdt[TSSSEG>>3] = SEGDESC(base, (sizeof(c->ts)-1), SEG_P|SEG_TSS64A);
c->gdt[(TSSSEG>>3)+1] = SEGDESCHI(base);
c->ts.rsp[0] = (uint64) p->kstack + KSTACKSIZE;
c->ts.iomba = (ushort) 0xFFFF;
dtr.limit = sizeof(c->gdt) - 1;
dtr.base = (uint64)c->gdt;
lgdt((void *)&dtr.limit);
ltr(TSSSEG);
lcr3(V2P(p->pgdir)); // switch to process's address space
popcli();
}
// Load the initcode into address 0 of pgdir.
// sz must be less than a page.
void
inituvm(pde_t *pgdir, char *init, uint sz)
{
char *mem;
if(sz >= PGSIZE)
panic("inituvm: more than a page");
mem = kalloc();
memset(mem, 0, PGSIZE);
mappages(pgdir, 0, PGSIZE, V2P(mem), PTE_W|PTE_U);
memmove(mem, init, sz);
}
// Load a program segment into pgdir. addr must be page-aligned
// and the pages from addr to addr+sz must already be mapped.
int
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
{
uint i, n;
uint64 pa;
pte_t *pte;
if((uint64) addr % PGSIZE != 0)
panic("loaduvm: addr must be page aligned");
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
panic("loaduvm: address should exist");
pa = PTE_ADDR(*pte);
if(sz - i < PGSIZE)
n = sz - i;
else
n = PGSIZE;
if(readi(ip, P2V(pa), offset+i, n) != n)
return -1;
}
return 0;
}
// Allocate page tables and physical memory to grow process from oldsz to
// newsz, which need not be page aligned. Returns new size or 0 on error.
int
allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
{
char *mem;
uint64 a;
if(newsz >= KERNBASE)
return 0;
if(newsz < oldsz)
return oldsz;
a = PGROUNDUP(oldsz);
for(; a < newsz; a += PGSIZE){
mem = kalloc();
if(mem == 0){
deallocuvm(pgdir, newsz, oldsz);
return 0;
}
memset(mem, 0, PGSIZE);
if(mappages(pgdir, (char*)a, PGSIZE, V2P(mem), PTE_W|PTE_U) < 0){
deallocuvm(pgdir, newsz, oldsz);
kfree(mem);
return 0;
}
}
return newsz;
}
// Deallocate user pages to bring the process size from oldsz to
// newsz. oldsz and newsz need not be page-aligned, nor does newsz
// need to be less than oldsz. oldsz can be larger than the actual
// process size. Returns the new process size.
int
deallocuvm(pde_t *pml4, uint64 oldsz, uint64 newsz)
{
pte_t *pte;
uint64 a, pa;
if(newsz >= oldsz)
return oldsz;
a = PGROUNDUP(newsz);
for(; a < oldsz; a += PGSIZE){
pte = walkpgdir(pml4, (char*)a, 0);
if(!pte)
continue;
else if((*pte & PTE_P) != 0){
pa = PTE_ADDR(*pte);
if(pa == 0)
panic("kfree");
char *v = P2V(pa);
kfree(v);
*pte = 0;
}
}
return newsz;
}
// Recursively free a page table
void
freelevel(pde_t *pgtab, int level) {
int i;
pde_t *pd;
if (level > 0) {
for(i = 0; i < NPDENTRIES; i++) {
if(pgtab[i] & PTE_P){
pd = (pde_t*)P2V(PTE_ADDR(pgtab[i]));
freelevel(pd, level-1);
}
}
}
kfree((char*)pgtab);
}
// Free all the physical memory pages
// in the user part and page table
void
freevm(pde_t *pml4, uint64 sz)
{
if(pml4 == 0)
panic("freevm: no pgdir");
deallocuvm(pml4, sz, 0);
freelevel(pml4, L_PML4);
}
// Clear PTE_U on a page. Used to create an inaccessible
// page beneath the user stack.
void
clearpteu(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if(pte == 0)
panic("clearpteu");
*pte &= ~PTE_U;
}
// Given a parent process's page table, create a copy
// of it for a child.
pde_t*
copyuvm(pde_t *pgdir, uint sz)
{
pde_t *d;
pte_t *pte;
uint64 pa, i;
uint flags;
char *mem;
if((d = setupkvm()) == 0)
return 0;
for(i = 0; i < sz; i += PGSIZE){
if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
panic("copyuvm: pte should exist");
if(!(*pte & PTE_P))
panic("copyuvm: page not present");
pa = PTE_ADDR(*pte);
flags = PTE_FLAGS(*pte);
if((mem = kalloc()) == 0)
goto bad;
memmove(mem, (char*)P2V(pa), PGSIZE);
if(mappages(d, (void*)i, PGSIZE, V2P(mem), flags) < 0) {
kfree(mem);
goto bad;
}
}
return d;
bad:
freevm(d, sz);
return 0;
}
//PAGEBREAK!
// Map user virtual address to kernel address.
char*
uva2ka(pde_t *pgdir, char *uva)
{
pte_t *pte;
pte = walkpgdir(pgdir, uva, 0);
if((*pte & PTE_P) == 0)
return 0;
if((*pte & PTE_U) == 0)
return 0;
return (char*)P2V(PTE_ADDR(*pte));
}
// Copy len bytes from p to user address va in page table pgdir.
// Most useful when pgdir is not the current page table.
// uva2ka ensures this only works for PTE_U pages.
int
copyout(pde_t *pgdir, uint va, void *p, uint len)
{
char *buf, *pa0;
uint64 n, va0;
buf = (char*)p;
while(len > 0){
va0 = (uint)PGROUNDDOWN(va);
pa0 = uva2ka(pgdir, (char*)va0);
if(pa0 == 0)
return -1;
n = PGSIZE - (va - va0);
if(n > len)
n = len;
memmove(pa0 + (va - va0), buf, n);
len -= n;
buf += n;
va = va0 + PGSIZE;
}
return 0;
}
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.
//PAGEBREAK!
// Blank page.