357 lines
7.5 KiB
C
357 lines
7.5 KiB
C
#include "types.h"
|
|
#include "mmu.h"
|
|
#include "x86.h"
|
|
#include "param.h"
|
|
#include "fd.h"
|
|
#include "proc.h"
|
|
#include "defs.h"
|
|
#include "spinlock.h"
|
|
|
|
struct spinlock proc_table_lock;
|
|
|
|
struct proc proc[NPROC];
|
|
struct proc *curproc[NCPU];
|
|
int next_pid = 1;
|
|
|
|
/*
|
|
* set up a process's task state and segment descriptors
|
|
* correctly, given its current size and address in memory.
|
|
* this should be called whenever the latter change.
|
|
* doesn't change the cpu's current segmentation setup.
|
|
*/
|
|
void
|
|
setupsegs(struct proc *p)
|
|
{
|
|
memset(&p->ts, 0, sizeof(struct Taskstate));
|
|
p->ts.ts_ss0 = SEG_KDATA << 3;
|
|
p->ts.ts_esp0 = (unsigned)(p->kstack + KSTACKSIZE);
|
|
|
|
// XXX it may be wrong to modify the current segment table!
|
|
|
|
p->gdt[0] = SEG_NULL;
|
|
p->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
|
p->gdt[SEG_TSS] = SEG16(STS_T32A, (unsigned) &p->ts,
|
|
sizeof(p->ts), 0);
|
|
p->gdt[SEG_TSS].sd_s = 0;
|
|
p->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (unsigned)p->mem, p->sz, 3);
|
|
p->gdt[SEG_UDATA] = SEG(STA_W, (unsigned)p->mem, p->sz, 3);
|
|
p->gdt_pd.pd__garbage = 0;
|
|
p->gdt_pd.pd_lim = sizeof(p->gdt) - 1;
|
|
p->gdt_pd.pd_base = (unsigned) p->gdt;
|
|
}
|
|
|
|
extern void trapret();
|
|
|
|
/*
|
|
* internal fork(). does not copy kernel stack; instead,
|
|
* sets up the stack to return as if from system call.
|
|
* caller must set state to RUNNABLE.
|
|
*/
|
|
struct proc *
|
|
newproc()
|
|
{
|
|
struct proc *np;
|
|
struct proc *op;
|
|
int fd;
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
for(np = &proc[1]; np < &proc[NPROC]; np++){
|
|
if(np->state == UNUSED){
|
|
np->state = EMBRYO;
|
|
break;
|
|
}
|
|
}
|
|
if(np >= &proc[NPROC]){
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
// copy from proc[0] if we're bootstrapping
|
|
op = curproc[cpu()];
|
|
if(op == 0)
|
|
op = &proc[0];
|
|
|
|
np->pid = next_pid++;
|
|
np->ppid = op->pid;
|
|
|
|
release(&proc_table_lock);
|
|
|
|
np->sz = op->sz;
|
|
np->mem = kalloc(op->sz);
|
|
if(np->mem == 0)
|
|
return 0;
|
|
memcpy(np->mem, op->mem, np->sz);
|
|
np->kstack = kalloc(KSTACKSIZE);
|
|
if(np->kstack == 0){
|
|
kfree(np->mem, op->sz);
|
|
np->state = UNUSED;
|
|
return 0;
|
|
}
|
|
setupsegs(np);
|
|
|
|
// set up kernel stack to return to user space
|
|
np->tf = (struct Trapframe *) (np->kstack + KSTACKSIZE - sizeof(struct Trapframe));
|
|
*(np->tf) = *(op->tf);
|
|
np->tf->tf_regs.reg_eax = 0; // so fork() returns 0 in child
|
|
|
|
// set up new jmpbuf to start executing at trapret with esp pointing at tf
|
|
memset(&np->jmpbuf, 0, sizeof np->jmpbuf);
|
|
np->jmpbuf.jb_eip = (unsigned) trapret;
|
|
np->jmpbuf.jb_esp = (unsigned) np->tf - 4; // -4 for the %eip that isn't actually there
|
|
|
|
// copy file descriptors
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
np->fds[fd] = op->fds[fd];
|
|
if(np->fds[fd])
|
|
fd_reference(np->fds[fd]);
|
|
}
|
|
|
|
return np;
|
|
}
|
|
|
|
void
|
|
scheduler(void)
|
|
{
|
|
struct proc *op, *np;
|
|
int i;
|
|
|
|
cprintf("start scheduler on cpu %d jmpbuf %p\n", cpu(), &cpus[cpu()].jmpbuf);
|
|
cpus[cpu()].lastproc = &proc[0];
|
|
|
|
setjmp(&cpus[cpu()].jmpbuf);
|
|
|
|
op = curproc[cpu()];
|
|
|
|
if(op == 0 || op->mtx != &proc_table_lock)
|
|
acquire1(&proc_table_lock, op);
|
|
|
|
if(op){
|
|
if(op->newstate <= 0 || op->newstate > ZOMBIE)
|
|
panic("scheduler");
|
|
op->state = op->newstate;
|
|
op->newstate = -1;
|
|
if(op->mtx){
|
|
struct spinlock *mtx = op->mtx;
|
|
op->mtx = 0;
|
|
if(mtx != &proc_table_lock)
|
|
release1(mtx, op);
|
|
}
|
|
}
|
|
|
|
// find a runnable process and switch to it
|
|
curproc[cpu()] = 0;
|
|
np = cpus[cpu()].lastproc + 1;
|
|
while(1){
|
|
for(i = 0; i < NPROC; i++){
|
|
if(np >= &proc[NPROC])
|
|
np = &proc[0];
|
|
if(np->state == RUNNABLE)
|
|
break;
|
|
np++;
|
|
}
|
|
|
|
if(i < NPROC){
|
|
np->state = RUNNING;
|
|
release1(&proc_table_lock, op);
|
|
break;
|
|
}
|
|
|
|
release1(&proc_table_lock, op);
|
|
op = 0;
|
|
acquire(&proc_table_lock);
|
|
np = &proc[0];
|
|
}
|
|
|
|
cpus[cpu()].lastproc = np;
|
|
curproc[cpu()] = np;
|
|
|
|
// h/w sets busy bit in TSS descriptor sometimes, and faults
|
|
// if it's set in LTR. so clear tss descriptor busy bit.
|
|
np->gdt[SEG_TSS].sd_type = STS_T32A;
|
|
|
|
// XXX should probably have an lgdt() function in x86.h
|
|
// to confine all the inline assembly.
|
|
// XXX probably ought to lgdt on trap return too, in case
|
|
// a system call has moved a program or changed its size.
|
|
asm volatile("lgdt %0" : : "g" (np->gdt_pd.pd_lim));
|
|
ltr(SEG_TSS << 3);
|
|
|
|
if(0) cprintf("cpu%d: run %d esp=%p callerpc=%p\n", cpu(), np-proc);
|
|
longjmp(&np->jmpbuf);
|
|
}
|
|
|
|
// give up the cpu by switching to the scheduler,
|
|
// which runs on the per-cpu stack.
|
|
void
|
|
swtch(int newstate)
|
|
{
|
|
struct proc *p = curproc[cpu()];
|
|
|
|
if(p == 0)
|
|
panic("swtch no proc");
|
|
if(p->mtx == 0 && p->locks != 0)
|
|
panic("swtch w/ locks");
|
|
if(p->mtx && p->locks != 1)
|
|
panic("swtch w/ locks 1");
|
|
if(p->mtx && p->mtx->locked == 0)
|
|
panic("switch w/ lock but not held");
|
|
if(p->locks && (read_eflags() & FL_IF))
|
|
panic("swtch w/ lock but FL_IF");
|
|
|
|
p->newstate = newstate; // basically an argument to scheduler()
|
|
if(setjmp(&p->jmpbuf) == 0)
|
|
longjmp(&cpus[cpu()].jmpbuf);
|
|
}
|
|
|
|
void
|
|
sleep(void *chan, struct spinlock *mtx)
|
|
{
|
|
struct proc *p = curproc[cpu()];
|
|
|
|
if(p == 0)
|
|
panic("sleep");
|
|
|
|
p->chan = chan;
|
|
p->mtx = mtx; // scheduler will release it
|
|
|
|
swtch(WAITING);
|
|
|
|
if(mtx)
|
|
acquire(mtx);
|
|
p->chan = 0;
|
|
}
|
|
|
|
void
|
|
wakeup1(void *chan)
|
|
{
|
|
struct proc *p;
|
|
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->state == WAITING && p->chan == chan)
|
|
p->state = RUNNABLE;
|
|
}
|
|
|
|
void
|
|
wakeup(void *chan)
|
|
{
|
|
acquire(&proc_table_lock);
|
|
wakeup1(chan);
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// give up the CPU but stay marked as RUNNABLE
|
|
void
|
|
yield()
|
|
{
|
|
if(curproc[cpu()] == 0 || curproc[cpu()]->state != RUNNING)
|
|
panic("yield");
|
|
swtch(RUNNABLE);
|
|
}
|
|
|
|
void
|
|
proc_exit()
|
|
{
|
|
struct proc *p;
|
|
struct proc *cp = curproc[cpu()];
|
|
int fd;
|
|
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
if(cp->fds[fd]){
|
|
fd_close(cp->fds[fd]);
|
|
cp->fds[fd] = 0;
|
|
}
|
|
}
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
// wake up parent
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->pid == cp->ppid)
|
|
wakeup1(p);
|
|
|
|
// abandon children
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->ppid == cp->pid)
|
|
p->pid = 1;
|
|
|
|
cp->mtx = &proc_table_lock;
|
|
swtch(ZOMBIE);
|
|
panic("a zombie revived");
|
|
}
|
|
|
|
int
|
|
proc_wait(void)
|
|
{
|
|
struct proc *p;
|
|
struct proc *cp = curproc[cpu()];
|
|
int any, pid;
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
while(1){
|
|
any = 0;
|
|
for(p = proc; p < &proc[NPROC]; p++){
|
|
if(p->state == ZOMBIE && p->ppid == cp->pid){
|
|
kfree(p->mem, p->sz);
|
|
kfree(p->kstack, KSTACKSIZE);
|
|
pid = p->pid;
|
|
p->state = UNUSED;
|
|
release(&proc_table_lock);
|
|
return pid;
|
|
}
|
|
if(p->state != UNUSED && p->ppid == cp->pid)
|
|
any = 1;
|
|
}
|
|
if(any == 0){
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
sleep(cp, &proc_table_lock);
|
|
}
|
|
}
|
|
|
|
int
|
|
proc_kill(int pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(p = proc; p < &proc[NPROC]; p++){
|
|
if(p->pid == pid && p->state != UNUSED){
|
|
p->killed = 1;
|
|
if(p->state == WAITING)
|
|
p->state = RUNNABLE;
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
}
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
|
|
// disable interrupts
|
|
void
|
|
cli(void)
|
|
{
|
|
if(cpus[cpu()].clis == 0)
|
|
__asm __volatile("cli");
|
|
cpus[cpu()].clis += 1;
|
|
if((read_eflags() & FL_IF) != 0)
|
|
panic("cli but enabled");
|
|
}
|
|
|
|
// enable interrupts
|
|
void
|
|
sti(void)
|
|
{
|
|
if((read_eflags() & FL_IF) != 0)
|
|
panic("sti but enabled");
|
|
if(cpus[cpu()].clis < 1)
|
|
panic("sti");
|
|
cpus[cpu()].clis -= 1;
|
|
if(cpus[cpu()].clis < 1)
|
|
__asm __volatile("sti");
|
|
}
|