8d774afb2d
kinit() knows about end and PHYSTOP map all of kernel read/write (rather than r/o instructions) thanks, austin
344 lines
8.6 KiB
C
344 lines
8.6 KiB
C
#include "param.h"
|
|
#include "types.h"
|
|
#include "defs.h"
|
|
#include "x86.h"
|
|
#include "mmu.h"
|
|
#include "proc.h"
|
|
#include "elf.h"
|
|
|
|
// The mappings from logical to linear are one to one (i.e.,
|
|
// segmentation doesn't do anything).
|
|
// There is one page table per process, plus one that's used
|
|
// when a CPU is not running any process (kpgdir).
|
|
// A user process uses the same page table as the kernel; the
|
|
// page protection bits prevent it from using anything other
|
|
// than its memory.
|
|
//
|
|
// setupkvm() and exec() set up every page table like this:
|
|
// 0..640K : user memory (text, data, stack, heap)
|
|
// 640K..1M : mapped direct (for IO space)
|
|
// 1M..end : mapped direct (for the kernel's text and data)
|
|
// end..PHYSTOP : mapped direct (kernel heap and user pages)
|
|
// 0xfe000000..0 : mapped direct (devices such as ioapic)
|
|
//
|
|
// The kernel allocates memory for its heap and for user memory
|
|
// between kernend and the end of physical memory (PHYSTOP).
|
|
// The virtual address space of each user program includes the kernel
|
|
// (which is inaccessible in user mode). The user program addresses
|
|
// range from 0 till 640KB (USERTOP), which where the I/O hole starts
|
|
// (both in physical memory and in the kernel's virtual address
|
|
// space).
|
|
|
|
#define USERTOP 0xA0000
|
|
|
|
static pde_t *kpgdir; // for use in scheduler()
|
|
|
|
// return the address of the PTE in page table pgdir
|
|
// that corresponds to linear address va. if create!=0,
|
|
// create any required page table pages.
|
|
static pte_t *
|
|
walkpgdir(pde_t *pgdir, const void *va, int create)
|
|
{
|
|
uint r;
|
|
pde_t *pde;
|
|
pte_t *pgtab;
|
|
|
|
pde = &pgdir[PDX(va)];
|
|
if (*pde & PTE_P) {
|
|
pgtab = (pte_t*) PTE_ADDR(*pde);
|
|
} else if (!create || !(r = (uint) kalloc()))
|
|
return 0;
|
|
else {
|
|
pgtab = (pte_t*) r;
|
|
|
|
// Make sure all those PTE_P bits are zero.
|
|
memset(pgtab, 0, PGSIZE);
|
|
|
|
// The permissions here are overly generous, but they can
|
|
// be further restricted by the permissions in the page table
|
|
// entries, if necessary.
|
|
*pde = PADDR(r) | PTE_P | PTE_W | PTE_U;
|
|
}
|
|
return &pgtab[PTX(va)];
|
|
}
|
|
|
|
// create PTEs for linear addresses starting at la that refer to
|
|
// physical addresses starting at pa. la and size might not
|
|
// be page-aligned.
|
|
static int
|
|
mappages(pde_t *pgdir, void *la, uint size, uint pa, int perm)
|
|
{
|
|
char *first = PGROUNDDOWN(la);
|
|
char *last = PGROUNDDOWN(la + size - 1);
|
|
char *a = first;
|
|
while(1){
|
|
pte_t *pte = walkpgdir(pgdir, a, 1);
|
|
if(pte == 0)
|
|
return 0;
|
|
if(*pte & PTE_P)
|
|
panic("remap");
|
|
*pte = pa | perm | PTE_P;
|
|
if(a == last)
|
|
break;
|
|
a += PGSIZE;
|
|
pa += PGSIZE;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// Set up CPU's kernel segment descriptors.
|
|
// Run once at boot time on each CPU.
|
|
void
|
|
ksegment(void)
|
|
{
|
|
struct cpu *c;
|
|
|
|
// Map virtual addresses to linear addresses using identity map.
|
|
// Cannot share a CODE descriptor for both kernel and user
|
|
// because it would have to have DPL_USR, but the CPU forbids
|
|
// an interrupt from CPL=0 to DPL=3.
|
|
c = &cpus[cpunum()];
|
|
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
|
|
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
|
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
|
|
c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
|
|
|
|
// map cpu, and curproc
|
|
c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
|
|
|
|
lgdt(c->gdt, sizeof(c->gdt));
|
|
loadgs(SEG_KCPU << 3);
|
|
|
|
// Initialize cpu-local storage.
|
|
cpu = c;
|
|
proc = 0;
|
|
}
|
|
|
|
// Switch h/w page table and TSS registers to point to process p.
|
|
void
|
|
switchuvm(struct proc *p)
|
|
{
|
|
pushcli();
|
|
|
|
// Setup TSS
|
|
cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
|
|
cpu->gdt[SEG_TSS].s = 0;
|
|
cpu->ts.ss0 = SEG_KDATA << 3;
|
|
cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
|
|
ltr(SEG_TSS << 3);
|
|
|
|
if (p->pgdir == 0)
|
|
panic("switchuvm: no pgdir\n");
|
|
|
|
lcr3(PADDR(p->pgdir)); // switch to new address space
|
|
popcli();
|
|
}
|
|
|
|
// Switch h/w page table register to the kernel-only page table, for when
|
|
// no process is running.
|
|
void
|
|
switchkvm()
|
|
{
|
|
lcr3(PADDR(kpgdir)); // Switch to the kernel page table
|
|
}
|
|
|
|
// Set up kernel part of a page table.
|
|
pde_t*
|
|
setupkvm(void)
|
|
{
|
|
pde_t *pgdir;
|
|
|
|
// Allocate page directory
|
|
if (!(pgdir = (pde_t *) kalloc()))
|
|
return 0;
|
|
memset(pgdir, 0, PGSIZE);
|
|
// Map IO space from 640K to 1Mbyte
|
|
if (!mappages(pgdir, (void *)USERTOP, 0x60000, USERTOP, PTE_W))
|
|
return 0;
|
|
// Map kernel and free memory pool
|
|
if (!mappages(pgdir, (void *)0x100000, PHYSTOP-0x100000, 0x100000, PTE_W))
|
|
return 0;
|
|
// Map devices such as ioapic, lapic, ...
|
|
if (!mappages(pgdir, (void *)0xFE000000, 0x2000000, 0xFE000000, PTE_W))
|
|
return 0;
|
|
return pgdir;
|
|
}
|
|
|
|
// return the physical address that a given user address
|
|
// maps to. the result is also a kernel logical address,
|
|
// since the kernel maps the physical memory allocated to user
|
|
// processes directly.
|
|
char*
|
|
uva2ka(pde_t *pgdir, char *uva)
|
|
{
|
|
pte_t *pte = walkpgdir(pgdir, uva, 0);
|
|
if (pte == 0) return 0;
|
|
uint pa = PTE_ADDR(*pte);
|
|
return (char *)pa;
|
|
}
|
|
|
|
// allocate sz bytes more memory for a process starting at the
|
|
// given user address; allocates physical memory and page
|
|
// table entries. addr and sz need not be page-aligned.
|
|
// it is a no-op for any parts of the requested memory
|
|
// that are already allocated.
|
|
int
|
|
allocuvm(pde_t *pgdir, char *addr, uint sz)
|
|
{
|
|
if (addr + sz > (char*)USERTOP)
|
|
return 0;
|
|
char *first = PGROUNDDOWN(addr);
|
|
char *last = PGROUNDDOWN(addr + sz - 1);
|
|
char *a;
|
|
for(a = first; a <= last; a += PGSIZE){
|
|
pte_t *pte = walkpgdir(pgdir, a, 0);
|
|
if(pte == 0 || (*pte & PTE_P) == 0){
|
|
char *mem = kalloc();
|
|
if(mem == 0){
|
|
// XXX clean up?
|
|
return 0;
|
|
}
|
|
memset(mem, 0, PGSIZE);
|
|
mappages(pgdir, a, PGSIZE, PADDR(mem), PTE_W|PTE_U);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// deallocate some of the user pages, in response to sbrk()
|
|
// with a negative argument. if addr is not page-aligned,
|
|
// then only deallocates starting at the next page boundary.
|
|
int
|
|
deallocuvm(pde_t *pgdir, char *addr, uint sz)
|
|
{
|
|
if (addr + sz > (char*)USERTOP)
|
|
return 0;
|
|
char *first = (char*) PGROUNDUP((uint)addr);
|
|
char *last = PGROUNDDOWN(addr + sz - 1);
|
|
char *a;
|
|
for(a = first; a <= last; a += PGSIZE){
|
|
pte_t *pte = walkpgdir(pgdir, a, 0);
|
|
if(pte && (*pte & PTE_P) != 0){
|
|
uint pa = PTE_ADDR(*pte);
|
|
if(pa == 0)
|
|
panic("deallocuvm");
|
|
kfree((void *) pa);
|
|
*pte = 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// free a page table and all the physical memory pages
|
|
// in the user part.
|
|
void
|
|
freevm(pde_t *pgdir)
|
|
{
|
|
uint i, j, da;
|
|
|
|
if (!pgdir)
|
|
panic("freevm: no pgdir\n");
|
|
for (i = 0; i < NPDENTRIES; i++) {
|
|
da = PTE_ADDR(pgdir[i]);
|
|
if (da != 0) {
|
|
pte_t *pgtab = (pte_t*) da;
|
|
for (j = 0; j < NPTENTRIES; j++) {
|
|
if (pgtab[j] != 0) {
|
|
uint pa = PTE_ADDR(pgtab[j]);
|
|
uint va = PGADDR(i, j, 0);
|
|
if (va < USERTOP) // user memory
|
|
kfree((void *) pa);
|
|
pgtab[j] = 0;
|
|
}
|
|
}
|
|
kfree((void *) da);
|
|
pgdir[i] = 0;
|
|
}
|
|
}
|
|
kfree((void *) pgdir);
|
|
}
|
|
|
|
int
|
|
loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
|
|
{
|
|
uint i, pa, n;
|
|
pte_t *pte;
|
|
|
|
if ((uint)addr % PGSIZE != 0)
|
|
panic("loaduvm: addr must be page aligned\n");
|
|
for (i = 0; i < sz; i += PGSIZE) {
|
|
if (!(pte = walkpgdir(pgdir, addr+i, 0)))
|
|
panic("loaduvm: address should exist\n");
|
|
pa = PTE_ADDR(*pte);
|
|
if (sz - i < PGSIZE) n = sz - i;
|
|
else n = PGSIZE;
|
|
if(readi(ip, (char *)pa, offset+i, n) != n)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
inituvm(pde_t *pgdir, char *addr, char *init, uint sz)
|
|
{
|
|
uint i, pa, n, off;
|
|
pte_t *pte;
|
|
|
|
for (i = 0; i < sz; i += PGSIZE) {
|
|
if (!(pte = walkpgdir(pgdir, (void *)(i+addr), 0)))
|
|
panic("inituvm: pte should exist\n");
|
|
off = (i+(uint)addr) % PGSIZE;
|
|
pa = PTE_ADDR(*pte);
|
|
if (sz - i < PGSIZE) n = sz - i;
|
|
else n = PGSIZE;
|
|
memmove((char *)pa+off, init+i, n);
|
|
}
|
|
}
|
|
|
|
// given a parent process's page table, create a copy
|
|
// of it for a child.
|
|
pde_t*
|
|
copyuvm(pde_t *pgdir, uint sz)
|
|
{
|
|
pde_t *d = setupkvm();
|
|
pte_t *pte;
|
|
uint pa, i;
|
|
char *mem;
|
|
|
|
if (!d) return 0;
|
|
for (i = 0; i < sz; i += PGSIZE) {
|
|
if (!(pte = walkpgdir(pgdir, (void *)i, 0)))
|
|
panic("copyuvm: pte should exist\n");
|
|
if(*pte & PTE_P){
|
|
pa = PTE_ADDR(*pte);
|
|
if (!(mem = kalloc()))
|
|
return 0;
|
|
memmove(mem, (char *)pa, PGSIZE);
|
|
if (!mappages(d, (void *)i, PGSIZE, PADDR(mem), PTE_W|PTE_U))
|
|
return 0;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
// Allocate one page table for the machine for the kernel address
|
|
// space for scheduler processes.
|
|
void
|
|
kvmalloc(void)
|
|
{
|
|
kpgdir = setupkvm();
|
|
}
|
|
|
|
// Turn on paging.
|
|
void
|
|
vmenable(void)
|
|
{
|
|
uint cr0;
|
|
|
|
switchkvm(); // load kpgdir into cr3
|
|
cr0 = rcr0();
|
|
cr0 |= CR0_PG;
|
|
lcr0(cr0);
|
|
}
|
|
|