xv6-65oo2/kernel/proc.c
Frans Kaashoek dabbc348bc Maybe fix two races identified by rtm (thx!):
- during exit(), hold p's parent lock and p's lock across all changes
to p and its parent (e.g., reparenting and wakeup1).  the lock
ordering between concurrent exits of children, parent, and great
parent might work out because processes form a tree.

- in wakeup1() test and set p->state atomically by asking caller to
have p locked.

a correctness proof would be desirable.
2019-07-06 16:38:41 -04:00

648 lines
13 KiB
C

#include "types.h"
#include "param.h"
#include "memlayout.h"
#include "riscv.h"
#include "spinlock.h"
#include "proc.h"
#include "defs.h"
struct {
struct spinlock lock;
struct proc proc[NPROC];
} ptable;
struct cpu cpus[NCPU];
struct proc *initproc;
int nextpid = 1;
extern void forkret(void);
// for returning out of the kernel
extern void sysexit(void);
static void wakeup1(struct proc *chan);
extern char trampout[]; // trampoline.S
void
procinit(void)
{
struct proc *p;
initlock(&ptable.lock, "ptable");
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
initlock(&p->lock, "proc");
}
// Must be called with interrupts disabled,
// to prevent race with process being moved
// to a different CPU.
int
cpuid()
{
int id = r_tp();
return id;
}
// Return this core's cpu struct.
// Interrupts must be disabled.
struct cpu*
mycpu(void) {
int id = cpuid();
struct cpu *c = &cpus[id];
return c;
}
// Return the current struct proc *.
struct proc*
myproc(void) {
push_off();
struct cpu *c = mycpu();
struct proc *p = c->proc;
pop_off();
return p;
}
int
allocpid() {
int pid;
acquire(&ptable.lock);
pid = nextpid++;
release(&ptable.lock);
return pid;
}
//PAGEBREAK: 32
// Look in the process table for an UNUSED proc.
// If found, change state to EMBRYO and initialize
// state required to run in the kernel.
// Otherwise return 0.
static struct proc*
allocproc(void)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
acquire(&p->lock);
if(p->state == UNUSED) {
goto found;
} else {
release(&p->lock);
}
}
return 0;
found:
p->state = EMBRYO;
p->pid = allocpid();
// Allocate a page for the kernel stack.
if((p->kstack = kalloc()) == 0){
p->state = UNUSED;
return 0;
}
// Allocate a trapframe page.
if((p->tf = (struct trapframe *)kalloc()) == 0){
p->state = UNUSED;
return 0;
}
// An empty user page table.
p->pagetable = proc_pagetable(p);
// Set up new context to start executing at forkret,
// which returns to user space.
memset(&p->context, 0, sizeof p->context);
p->context.ra = (uint64)forkret;
p->context.sp = (uint64)p->kstack + PGSIZE;
return p;
}
// free a proc structure and the data hanging from it,
// including user pages.
// the proc lock must be held.
static void
freeproc(struct proc *p)
{
if(p->kstack)
kfree(p->kstack);
p->kstack = 0;
if(p->tf)
kfree((void*)p->tf);
p->tf = 0;
if(p->pagetable)
proc_freepagetable(p->pagetable, p->sz);
p->pagetable = 0;
p->sz = 0;
p->pid = 0;
p->parent = 0;
p->name[0] = 0;
p->chan = 0;
p->killed = 0;
p->state = UNUSED;
}
// Create a page table for a given process,
// with no users pages, but with trampoline pages.
// Called both when creating a process, and
// by exec() when building tentative new memory image,
// which might fail.
pagetable_t
proc_pagetable(struct proc *p)
{
pagetable_t pagetable;
// An empty user page table.
pagetable = uvmcreate();
// map the trampoline code (for system call return)
// at the highest user virtual address.
// only the supervisor uses it, on the way
// to/from user space, so not PTE_U.
mappages(pagetable, TRAMPOLINE, PGSIZE,
(uint64)trampout, PTE_R | PTE_X);
// map the trapframe, for trampoline.S.
mappages(pagetable, (TRAMPOLINE - PGSIZE), PGSIZE,
(uint64)(p->tf), PTE_R | PTE_W);
return pagetable;
}
// Free a process's page table, and free the
// physical memory the page table refers to.
// Called both when a process exits and from
// exec() if it fails.
void
proc_freepagetable(pagetable_t pagetable, uint64 sz)
{
unmappages(pagetable, TRAMPOLINE, PGSIZE, 0);
unmappages(pagetable, TRAMPOLINE-PGSIZE, PGSIZE, 0);
if(sz > 0)
uvmfree(pagetable, sz);
}
// a user program that calls exec("/init")
// od -t xC initcode
uchar initcode[] = {
0x17, 0x05, 0x00, 0x00, 0x13, 0x05, 0x05, 0x02, 0x97, 0x05, 0x00, 0x00, 0x93, 0x85, 0x05, 0x02,
0x9d, 0x48, 0x73, 0x00, 0x00, 0x00, 0x89, 0x48, 0x73, 0x00, 0x00, 0x00, 0xef, 0xf0, 0xbf, 0xff,
0x2f, 0x69, 0x6e, 0x69, 0x74, 0x00, 0x00, 0x01, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00
};
//PAGEBREAK: 32
// Set up first user process.
void
userinit(void)
{
struct proc *p;
p = allocproc();
initproc = p;
uvminit(p->pagetable, initcode, sizeof(initcode));
p->sz = PGSIZE;
// prepare for the very first kernel->user.
p->tf->epc = 0;
p->tf->sp = PGSIZE;
safestrcpy(p->name, "initcode", sizeof(p->name));
p->cwd = namei("/");
p->state = RUNNABLE;
release(&p->lock);
}
// Grow current process's memory by n bytes.
// Return 0 on success, -1 on failure.
int
growproc(int n)
{
uint sz;
struct proc *p = myproc();
sz = p->sz;
if(n > 0){
if((sz = uvmalloc(p->pagetable, sz, sz + n)) == 0) {
return -1;
}
} else if(n < 0){
if((sz = uvmdealloc(p->pagetable, sz, sz + n)) == 0) {
return -1;
}
}
p->sz = sz;
return 0;
}
// Create a new process, copying p as the parent.
// Sets up child kernel stack to return as if from system call.
int
fork(void)
{
int i, pid;
struct proc *np;
struct proc *p = myproc();
// Allocate process.
if((np = allocproc()) == 0){
return -1;
}
// Copy user memory from parent to child.
if(uvmcopy(p->pagetable, np->pagetable, p->sz) < 0){
freeproc(np);
return -1;
}
np->sz = p->sz;
np->parent = p;
// copy saved user registers.
*(np->tf) = *(p->tf);
// Cause fork to return 0 in the child.
np->tf->a0 = 0;
// increment reference counts on open file descriptors.
for(i = 0; i < NOFILE; i++)
if(p->ofile[i])
np->ofile[i] = filedup(p->ofile[i]);
np->cwd = idup(p->cwd);
safestrcpy(np->name, p->name, sizeof(p->name));
pid = np->pid;
np->state = RUNNABLE;
release(&np->lock);
return pid;
}
// Pass p's abandoned children to init. p and p's parent
// are locked.
void reparent(struct proc *p, struct proc *parent) {
struct proc *pp;
for(pp = ptable.proc; pp < &ptable.proc[NPROC]; pp++){
if (pp != p && pp != parent) {
acquire(&pp->lock);
if(pp->parent == p){
pp->parent = initproc;
if(pp->state == ZOMBIE) {
acquire(&initproc->lock);
wakeup1(initproc);
release(&initproc->lock);
}
}
release(&pp->lock);
}
}
}
// Exit the current process. Does not return.
// An exited process remains in the zombie state
// until its parent calls wait().
void
exit(void)
{
struct proc *p = myproc();
int fd;
if(p == initproc)
panic("init exiting");
// Close all open files.
for(fd = 0; fd < NOFILE; fd++){
if(p->ofile[fd]){
struct file *f = p->ofile[fd];
fileclose(f);
p->ofile[fd] = 0;
}
}
struct inode *cwd = p->cwd;
begin_op();
iput(cwd);
end_op();
acquire(&p->parent->lock);
acquire(&p->lock);
reparent(p, p->parent);
p->cwd = 0;
p->state = ZOMBIE;
// Parent might be sleeping in wait().
wakeup1(p->parent);
release(&p->parent->lock);
// Jump into the scheduler, never to return.
sched();
panic("zombie exit");
}
// Wait for a child process to exit and return its pid.
// Return -1 if this process has no children.
int
wait(void)
{
struct proc *np;
int havekids, pid;
struct proc *p = myproc();
acquire(&p->lock);
for(;;){
// Scan through table looking for exited children.
havekids = 0;
for(np = ptable.proc; np < &ptable.proc[NPROC]; np++){
if(np->parent != p)
continue;
acquire(&np->lock);
havekids = 1;
if(np->state == ZOMBIE){
// Found one.
pid = np->pid;
freeproc(np);
release(&np->lock);
release(&p->lock);
return pid;
}
release(&np->lock);
}
// No point waiting if we don't have any children.
if(!havekids || p->killed){
release(&p->lock);
return -1;
}
// Wait for children to exit. (See wakeup1 call in reparent.)
sleep(p, &p->lock); //DOC: wait-sleep
}
}
//PAGEBREAK: 42
// Per-CPU process scheduler.
// Each CPU calls scheduler() after setting itself up.
// Scheduler never returns. It loops, doing:
// - choose a process to run
// - swtch to start running that process
// - eventually that process transfers control
// via swtch back to the scheduler.
void
scheduler(void)
{
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;
for(;;){
// Enable interrupts on this processor.
intr_on();
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
acquire(&p->lock);
if(p->state == RUNNABLE) {
// Switch to chosen process. It is the process's job
// to release its lock and then reacquire it
// before jumping back to us.
p->state = RUNNING;
c->proc = p;
swtch(&c->scheduler, &p->context);
// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;
release(&p->lock);
} else {
release(&p->lock);
}
}
}
}
// Enter scheduler. Must hold only p->lock
// and have changed proc->state. Saves and restores
// intena because intena is a property of this
// kernel thread, not this CPU. It should
// be proc->intena and proc->noff, but that would
// break in the few places where a lock is held but
// there's no process.
void
sched(void)
{
int intena;
struct proc *p = myproc();
if(!holding(&p->lock))
panic("sched p->lock");
if(mycpu()->noff != 1)
panic("sched locks");
if(p->state == RUNNING)
panic("sched running");
if(intr_get())
panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, &mycpu()->scheduler);
mycpu()->intena = intena;
}
// Give up the CPU for one scheduling round.
void
yield(void)
{
struct proc *p = myproc();
acquire(&p->lock); //DOC: yieldlock
p->state = RUNNABLE;
sched();
release(&p->lock);
}
// A fork child's very first scheduling by scheduler()
// will swtch to forkret.
void
forkret(void)
{
static int first = 1;
// Still holding p->lock from scheduler.
release(&myproc()->lock);
if (first) {
// Some initialization functions must be run in the context
// of a regular process (e.g., they call sleep), and thus cannot
// be run from main().
first = 0;
iinit(ROOTDEV);
initlog(ROOTDEV);
}
usertrapret();
}
// Atomically release lock and sleep on chan.
// Reacquires lock when awakened.
void
sleep(void *chan, struct spinlock *lk)
{
struct proc *p = myproc();
if(p == 0)
panic("sleep");
if(lk == 0)
panic("sleep without lk");
// Must acquire p->lock in order to
// change p->state and then call sched.
// Once we hold p->lock, we can be
// guaranteed that we won't miss any wakeup
// (wakeup runs with p->lock locked),
// so it's okay to release lk.
if(lk != &p->lock){ //DOC: sleeplock0
acquire(&p->lock); //DOC: sleeplock1
release(lk);
}
// Go to sleep.
p->chan = chan;
p->state = SLEEPING;
sched();
// Tidy up.
p->chan = 0;
// Reacquire original lock.
if(lk != &p->lock){ //DOC: sleeplock2
release(&p->lock);
acquire(lk);
}
}
//PAGEBREAK!
// Wake up p, used by exit()
// Caller should lock p.
static void
wakeup1(struct proc *p)
{
if(p->chan == p && p->state == SLEEPING) {
p->state = RUNNABLE;
}
}
// Wake up all processes sleeping on chan. Never
// called when holding a p->lock
void
wakeup(void *chan)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
acquire(&p->lock);
if(p->state == SLEEPING && p->chan == chan) {
p->state = RUNNABLE;
}
release(&p->lock);
}
}
// Kill the process with the given pid.
// Process won't exit until it returns
// to user space (see trap in trap.c).
int
kill(int pid)
{
struct proc *p;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->pid == pid){
acquire(&p->lock);
if(p->pid != pid)
panic("kill");
p->killed = 1;
// Wake process from sleep if necessary.
if(p->state == SLEEPING)
p->state = RUNNABLE;
release(&p->lock);
return 0;
}
}
return -1;
}
// Copy to either a user address, or kernel address,
// depending on usr_dst.
// Returns 0 on success, -1 on error.
int
either_copyout(int user_dst, uint64 dst, void *src, uint64 len)
{
struct proc *p = myproc();
if(user_dst){
return copyout(p->pagetable, dst, src, len);
} else {
memmove((char *)dst, src, len);
return 0;
}
}
// Copy from either a user address, or kernel address,
// depending on usr_src.
// Returns 0 on success, -1 on error.
int
either_copyin(void *dst, int user_src, uint64 src, uint64 len)
{
struct proc *p = myproc();
if(user_src){
return copyin(p->pagetable, dst, src, len);
} else {
memmove(dst, (char*)src, len);
return 0;
}
}
// Print a process listing to console. For debugging.
// Runs when user types ^P on console.
// No lock to avoid wedging a stuck machine further.
void
procdump(void)
{
static char *states[] = {
[UNUSED] "unused",
[EMBRYO] "embryo",
[SLEEPING] "sleep ",
[RUNNABLE] "runble",
[RUNNING] "run ",
[ZOMBIE] "zombie"
};
struct proc *p;
char *state;
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p->state == UNUSED)
continue;
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
state = states[p->state];
else
state = "???";
printf("%d %s %s", p->pid, state, p->name);
printf("\n");
}
}