xv6-65oo2/bio.c
Frans Kaashoek c24ac5d763 Disentangle block size from the disk's sector size. Set block size to 1024 to show
that they can be different.  Clean up mkfs, simplifying specifying fs parameters,
remove some redundancy between fs and mkfs, and fix disk layout bugs. Call blocks
in the file system blocks instead of sectors.  Passes usertests for different
block sizes.
2015-04-03 08:22:02 -04:00

146 lines
3.3 KiB
C

// Buffer cache.
//
// The buffer cache is a linked list of buf structures holding
// cached copies of disk block contents. Caching disk blocks
// in memory reduces the number of disk reads and also provides
// a synchronization point for disk blocks used by multiple processes.
//
// Interface:
// * To get a buffer for a particular disk block, call bread.
// * After changing buffer data, call bwrite to write it to disk.
// * When done with the buffer, call brelse.
// * Do not use the buffer after calling brelse.
// * Only one process at a time can use a buffer,
// so do not keep them longer than necessary.
//
// The implementation uses three state flags internally:
// * B_BUSY: the block has been returned from bread
// and has not been passed back to brelse.
// * B_VALID: the buffer data has been read from the disk.
// * B_DIRTY: the buffer data has been modified
// and needs to be written to disk.
#include "types.h"
#include "defs.h"
#include "param.h"
#include "spinlock.h"
#include "fs.h"
#include "buf.h"
struct {
struct spinlock lock;
struct buf buf[NBUF];
// Linked list of all buffers, through prev/next.
// head.next is most recently used.
struct buf head;
} bcache;
void
binit(void)
{
struct buf *b;
initlock(&bcache.lock, "bcache");
//PAGEBREAK!
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for(b = bcache.buf; b < bcache.buf+NBUF; b++){
b->next = bcache.head.next;
b->prev = &bcache.head;
b->dev = -1;
bcache.head.next->prev = b;
bcache.head.next = b;
}
}
// Look through buffer cache for block on device dev.
// If not found, allocate a buffer.
// In either case, return B_BUSY buffer.
static struct buf*
bget(uint dev, uint blockno)
{
struct buf *b;
acquire(&bcache.lock);
loop:
// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
if(!(b->flags & B_BUSY)){
b->flags |= B_BUSY;
release(&bcache.lock);
return b;
}
sleep(b, &bcache.lock);
goto loop;
}
}
// Not cached; recycle some non-busy and clean buffer.
// "clean" because B_DIRTY and !B_BUSY means log.c
// hasn't yet committed the changes to the buffer.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if((b->flags & B_BUSY) == 0 && (b->flags & B_DIRTY) == 0){
b->dev = dev;
b->blockno = blockno;
b->flags = B_BUSY;
release(&bcache.lock);
return b;
}
}
panic("bget: no buffers");
}
// Return a B_BUSY buf with the contents of the indicated block.
struct buf*
bread(uint dev, uint blockno)
{
struct buf *b;
b = bget(dev, blockno);
if(!(b->flags & B_VALID)) {
iderw(b);
}
return b;
}
// Write b's contents to disk. Must be B_BUSY.
void
bwrite(struct buf *b)
{
if((b->flags & B_BUSY) == 0)
panic("bwrite");
b->flags |= B_DIRTY;
iderw(b);
}
// Release a B_BUSY buffer.
// Move to the head of the MRU list.
void
brelse(struct buf *b)
{
if((b->flags & B_BUSY) == 0)
panic("brelse");
acquire(&bcache.lock);
b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;
b->flags &= ~B_BUSY;
wakeup(b);
release(&bcache.lock);
}
//PAGEBREAK!
// Blank page.