xv6-65oo2/defs.h
Frans Kaashoek ab0db651af Checkpoint port of xv6 to x86-64. Passed usertests on 2 processors a few times.
The x86-64 doesn't just add two levels to page tables to support 64 bit
addresses, but is a different processor. For example, calling conventions,
system calls, and segmentation are different from 32-bit x86. Segmentation is
basically gone, but gs/fs in combination with MSRs can be used to hold a
per-core pointer. In general, x86-64 is more straightforward than 32-bit
x86. The port uses code from sv6 and the xv6 "rsc-amd64" branch.

A summary of the changes is as follows:

- Booting: switch to grub instead of xv6's bootloader (pass -kernel to qemu),
because xv6's boot loader doesn't understand 64bit ELF files.  And, we don't
care anymore about booting.

- Makefile: use -m64 instead of -m32 flag for gcc, delete boot loader, xv6.img,
bochs, and memfs. For now dont' use -O2, since usertests with -O2 is bigger than
MAXFILE!

- Update gdb.tmpl to be for i386 or x86-64

- Console/printf: use stdarg.h and treat 64-bit addresses different from ints
  (32-bit)

- Update elfhdr to be 64 bit

- entry.S/entryother.S: add code to switch to 64-bit mode: build a simple page
table in 32-bit mode before switching to 64-bit mode, share code for entering
boot processor and APs, and tweak boot gdt.  The boot gdt is the gdt that the
kernel proper also uses. (In 64-bit mode, the gdt/segmentation and task state
mostly disappear.)

- exec.c: fix passing argv (64-bit now instead of 32-bit).

- initcode.c: use syscall instead of int.

- kernel.ld: load kernel very high, in top terabyte.  64 bits is a lot of
address space!

- proc.c: initial return is through new syscall path instead of trapret.

- proc.h: update struct cpu to have some scratch space since syscall saves less
state than int, update struct context to reflect x86-64 calling conventions.

- swtch: simplify for x86-64 calling conventions.

- syscall: add fetcharg to handle x86-64 calling convetions (6 arguments are
passed through registers), and fetchaddr to read a 64-bit value from user space.

- sysfile: update to handle pointers from user space (e.g., sys_exec), which are
64 bits.

- trap.c: no special trap vector for sys calls, because x86-64 has a different
plan for system calls.

- trapasm: one plan for syscalls and one plan for traps (interrupt and
exceptions). On x86-64, the kernel is responsible for switching user/kernel
stacks. To do, xv6 keeps some scratch space in the cpu structure, and uses MSR
GS_KERN_BASE to point to the core's cpu structure (using swapgs).

- types.h: add uint64, and change pde_t to uint64

- usertests: exit() when fork fails, which helped in tracking down one of the
bugs in the switch from 32-bit to 64-bit

- vectors: update to make them 64 bits

- vm.c: use bootgdt in kernel too, program MSRs for syscalls and core-local
state (for swapgs), walk 4 levels in walkpgdir, add DEVSPACETOP, use task
segment to set kernel stack for interrupts (but simpler than in 32-bit mode),
add an extra argument to freevm (size of user part of address space) to avoid
checking all entries till KERNBASE (there are MANY TB before the top 1TB).

- x86: update trapframe to have 64-bit entries, which is what the processor
pushes on syscalls and traps.  simplify lgdt and lidt, using struct desctr,
which needs the gcc directives packed and aligned.

TODO:
- use int32 instead of int?
- simplify curproc(). xv6 has per-cpu state again, but this time it must have it.
- avoid repetition in walkpgdir
- fix validateint() in usertests.c
- fix bugs (e.g., observed one a case of entering kernel with invalid gs or proc
2018-09-23 08:35:30 -04:00

193 lines
5.5 KiB
C

struct buf;
struct context;
struct file;
struct inode;
struct pipe;
struct proc;
struct rtcdate;
struct spinlock;
struct sleeplock;
struct stat;
struct superblock;
// bio.c
void binit(void);
struct buf* bread(uint, uint);
void brelse(struct buf*);
void bwrite(struct buf*);
// console.c
void consoleinit(void);
void cprintf(char*, ...);
void consoleintr(int(*)(void));
void panic(char*) __attribute__((noreturn));
// exec.c
int exec(char*, char**);
// file.c
struct file* filealloc(void);
void fileclose(struct file*);
struct file* filedup(struct file*);
void fileinit(void);
int fileread(struct file*, char*, int n);
int filestat(struct file*, struct stat*);
int filewrite(struct file*, char*, int n);
// fs.c
void readsb(int dev, struct superblock *sb);
int dirlink(struct inode*, char*, uint);
struct inode* dirlookup(struct inode*, char*, uint*);
struct inode* ialloc(uint, short);
struct inode* idup(struct inode*);
void iinit(int dev);
void ilock(struct inode*);
void iput(struct inode*);
void iunlock(struct inode*);
void iunlockput(struct inode*);
void iupdate(struct inode*);
int namecmp(const char*, const char*);
struct inode* namei(char*);
struct inode* nameiparent(char*, char*);
int readi(struct inode*, char*, uint, uint);
void stati(struct inode*, struct stat*);
int writei(struct inode*, char*, uint, uint);
// ide.c
void ideinit(void);
void ideintr(void);
void iderw(struct buf*);
// ioapic.c
void ioapicenable(int irq, int cpu);
extern uchar ioapicid;
void ioapicinit(void);
// kalloc.c
char* kalloc(void);
void kfree(char*);
void kinit1(void*, void*);
void kinit2(void*, void*);
// kbd.c
void kbdintr(void);
// lapic.c
void cmostime(struct rtcdate *r);
int lapicid(void);
extern volatile uint* lapic;
void lapiceoi(void);
void lapicinit(void);
void lapicstartap(uchar, uint);
void microdelay(int);
// log.c
void initlog(int dev);
void log_write(struct buf*);
void begin_op();
void end_op();
// mp.c
extern int ismp;
void mpinit(void);
// picirq.c
void picenable(int);
void picinit(void);
// pipe.c
int pipealloc(struct file**, struct file**);
void pipeclose(struct pipe*, int);
int piperead(struct pipe*, char*, int);
int pipewrite(struct pipe*, char*, int);
//PAGEBREAK: 16
// proc.c
int cpuid(void);
void exit(void);
int fork(void);
int growproc(int);
int kill(int);
struct cpu* mycpu(void);
struct proc* myproc();
void pinit(void);
void procdump(void);
void scheduler(void) __attribute__((noreturn));
void sched(void);
void setproc(struct proc*);
void sleep(void*, struct spinlock*);
void userinit(void);
int wait(void);
void wakeup(void*);
void yield(void);
// swtch.S
void swtch(struct context**, struct context*);
// spinlock.c
void acquire(struct spinlock*);
void getcallerpcs(void*, uint64*);
int holding(struct spinlock*);
void initlock(struct spinlock*, char*);
void release(struct spinlock*);
void pushcli(void);
void popcli(void);
// sleeplock.c
void acquiresleep(struct sleeplock*);
void releasesleep(struct sleeplock*);
int holdingsleep(struct sleeplock*);
void initsleeplock(struct sleeplock*, char*);
// string.c
int memcmp(const void*, const void*, uint);
void* memmove(void*, const void*, uint);
void* memset(void*, int, uint);
char* safestrcpy(char*, const char*, int);
int strlen(const char*);
int strncmp(const char*, const char*, uint);
char* strncpy(char*, const char*, int);
// syscall.c
int argint(int, int*);
int argptr(int, char**, int);
int argstr(int, char**);
int argaddr(int, uint64 *);
int fetchint(uint64, int*);
int fetchstr(uint64, char**);
int fetchaddr(uint64, uint64*);
void syscall(void);
// timer.c
void timerinit(void);
// trap.c
void idtinit(void);
extern uint ticks;
void tvinit(void);
extern struct spinlock tickslock;
// uart.c
void uartinit(void);
void uartintr(void);
void uartputc(int);
// vm.c
void seginit(void);
void kvmalloc(void);
pde_t* setupkvm(void);
char* uva2ka(pde_t*, char*);
int allocuvm(pde_t*, uint, uint);
int deallocuvm(pde_t*, uint64, uint64);
void freevm(pde_t*, uint64);
void inituvm(pde_t*, char*, uint);
int loaduvm(pde_t*, char*, struct inode*, uint, uint);
pde_t* copyuvm(pde_t*, uint);
void switchuvm(struct proc*);
void switchkvm(void);
int copyout(pde_t*, uint, void*, uint);
void clearpteu(pde_t *pgdir, char *uva);
// number of elements in fixed-size array
#define NELEM(x) (sizeof(x)/sizeof((x)[0]))