ack/lang/pc/libpc/exp.c

102 lines
1.7 KiB
C
Raw Normal View History

1984-07-20 10:44:57 +00:00
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
1984-07-20 10:44:57 +00:00
/* $Header$ */
1988-07-25 11:40:57 +00:00
#define __NO_DEFS
#include <math.h>
#include <pc_err.h>
extern _trp();
1984-07-20 10:44:57 +00:00
1989-07-19 14:51:19 +00:00
static double
ldexp(fl,exp)
double fl;
int exp;
{
extern double _fef();
int sign = 1;
int currexp;
if (fl<0) {
fl = -fl;
sign = -1;
}
fl = _fef(fl,&currexp);
exp += currexp;
if (exp > 0) {
while (exp>30) {
fl *= (double) (1L << 30);
exp -= 30;
}
fl *= (double) (1L << exp);
}
else {
while (exp<-30) {
fl /= (double) (1L << 30);
exp += 30;
}
fl /= (double) (1L << -exp);
}
return sign * fl;
}
1984-07-20 10:44:57 +00:00
double
_exp(x)
double x;
1984-07-20 10:44:57 +00:00
{
1989-06-19 16:22:23 +00:00
/* Algorithm and coefficients from:
"Software manual for the elementary functions"
by W.J. Cody and W. Waite, Prentice-Hall, 1980
*/
1989-06-19 16:22:23 +00:00
static double p[] = {
0.25000000000000000000e+0,
0.75753180159422776666e-2,
0.31555192765684646356e-4
};
1989-06-19 16:22:23 +00:00
static double q[] = {
0.50000000000000000000e+0,
0.56817302698551221787e-1,
0.63121894374398503557e-3,
0.75104028399870046114e-6
};
1989-06-19 16:22:23 +00:00
double xn, g;
int n;
int negative = x < 0;
1989-06-19 16:22:23 +00:00
if (x <= M_LN_MIN_D) {
return M_MIN_D;
}
if (x >= M_LN_MAX_D) {
if (x > M_LN_MAX_D) {
_trp(EEXP);
return HUGE;
}
return M_MAX_D;
}
1989-06-19 16:22:23 +00:00
if (negative) x = -x;
1989-06-19 16:22:23 +00:00
/* ??? avoid underflow ??? */
n = x * M_LOG2E + 0.5; /* 1/ln(2) = log2(e), 0.5 added for rounding */
xn = n;
{
double x1 = (long) x;
double x2 = x - x1;
g = ((x1-xn*0.693359375)+x2) - xn*(-2.1219444005469058277e-4);
}
1989-06-19 16:22:23 +00:00
if (negative) {
g = -g;
n = -n;
1984-07-20 10:44:57 +00:00
}
1989-06-19 16:22:23 +00:00
xn = g * g;
x = g * POLYNOM2(xn, p);
n += 1;
return (ldexp(0.5 + x/(POLYNOM3(xn, q) - x), n));
1984-07-20 10:44:57 +00:00
}