use new math algorithms
This commit is contained in:
parent
8b702734cf
commit
761312d0dd
|
@ -6,6 +6,7 @@
|
|||
*/
|
||||
|
||||
/* $Header$ */
|
||||
|
||||
#define __NO_DEFS
|
||||
#include <math.h>
|
||||
|
||||
|
@ -13,90 +14,55 @@ double
|
|||
_atn(x)
|
||||
double x;
|
||||
{
|
||||
/* The interval [0, infinity) is treated as follows:
|
||||
Define partition points Xi
|
||||
X0 = 0
|
||||
X1 = tan(pi/16)
|
||||
X2 = tan(3pi/16)
|
||||
X3 = tan(5pi/16)
|
||||
X4 = tan(7pi/16)
|
||||
X5 = infinity
|
||||
and evaluation nodes xi
|
||||
x2 = tan(2pi/16)
|
||||
x3 = tan(4pi/16)
|
||||
x4 = tan(6pi/16)
|
||||
x5 = infinity
|
||||
An argument x in [Xn-1, Xn] is now reduced to an argument
|
||||
t in [-X1, X1] by the following formulas:
|
||||
|
||||
t = 1/xn - (1/(xn*xn) + 1)/((1/xn) + x)
|
||||
|
||||
arctan(x) = arctan(xi) + arctan(t)
|
||||
|
||||
For the interval [0, p/16] an approximation is used:
|
||||
arctan(x) = x * P(x*x)/Q(x*x)
|
||||
/* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*/
|
||||
static struct precomputed {
|
||||
double X; /* partition point */
|
||||
double arctan; /* arctan of evaluation node */
|
||||
double one_o_x; /* 1 / xn */
|
||||
double one_o_xsq_p_1; /* 1 / (xn*xn) + 1 */
|
||||
} prec[5] = {
|
||||
{ 0.19891236737965800691159762264467622,
|
||||
0.0,
|
||||
0.0, /* these don't matter */
|
||||
0.0 } ,
|
||||
{ 0.66817863791929891999775768652308076, /* tan(3pi/16) */
|
||||
M_PI_8,
|
||||
2.41421356237309504880168872420969808,
|
||||
6.82842712474619009760337744841939616 },
|
||||
{ 1.49660576266548901760113513494247691, /* tan(5pi/16) */
|
||||
M_PI_4,
|
||||
1.0,
|
||||
2.0 },
|
||||
{ 5.02733949212584810451497507106407238, /* tan(7pi/16) */
|
||||
M_3PI_8,
|
||||
0.41421356237309504880168872420969808,
|
||||
1.17157287525380998659662255158060384 },
|
||||
{ MAXDOUBLE,
|
||||
M_PI_2,
|
||||
0.0,
|
||||
1.0 }};
|
||||
|
||||
/* Hart & Cheney # 5037 */
|
||||
|
||||
static double p[5] = {
|
||||
0.7698297257888171026986294745e+03,
|
||||
0.1557282793158363491416585283e+04,
|
||||
0.1033384651675161628243434662e+04,
|
||||
0.2485841954911840502660889866e+03,
|
||||
0.1566564964979791769948970100e+02
|
||||
static double p[] = {
|
||||
-0.13688768894191926929e+2,
|
||||
-0.20505855195861651981e+2,
|
||||
-0.84946240351320683534e+1,
|
||||
-0.83758299368150059274e+0
|
||||
};
|
||||
static double q[] = {
|
||||
0.41066306682575781263e+2,
|
||||
0.86157349597130242515e+2,
|
||||
0.59578436142597344465e+2,
|
||||
0.15024001160028576121e+2,
|
||||
1.0
|
||||
};
|
||||
static double a[] = {
|
||||
0.0,
|
||||
0.52359877559829887307710723554658381, /* pi/6 */
|
||||
M_PI_2,
|
||||
1.04719755119659774615421446109316763 /* pi/3 */
|
||||
};
|
||||
|
||||
static double q[6] = {
|
||||
0.7698297257888171026986294911e+03,
|
||||
0.1813892701754635858982709369e+04,
|
||||
0.1484049607102276827437401170e+04,
|
||||
0.4904645326203706217748848797e+03,
|
||||
0.5593479839280348664778328000e+02,
|
||||
0.1000000000000000000000000000e+01
|
||||
};
|
||||
int neg = x < 0;
|
||||
int n;
|
||||
double g;
|
||||
|
||||
int negative = x < 0.0;
|
||||
register struct precomputed *pr = prec;
|
||||
|
||||
if (negative) {
|
||||
if (neg) {
|
||||
x = -x;
|
||||
}
|
||||
while (x > pr->X) pr++;
|
||||
if (pr != prec) {
|
||||
x = pr->arctan +
|
||||
_atn(pr->one_o_x - pr->one_o_xsq_p_1/(pr->one_o_x + x));
|
||||
if (x > 1.0) {
|
||||
x = 1.0/x;
|
||||
n = 2;
|
||||
}
|
||||
else {
|
||||
double xsq = x*x;
|
||||
else n = 0;
|
||||
|
||||
x = x * POLYNOM4(xsq, p)/POLYNOM5(xsq, q);
|
||||
if (x > 0.26794919243112270647) { /* 2-sqtr(3) */
|
||||
n = n + 1;
|
||||
x = (((0.73205080756887729353*x-0.5)-0.5)+x)/
|
||||
(1.73205080756887729353+x);
|
||||
}
|
||||
return negative ? -x : x;
|
||||
|
||||
/* ??? avoid underflow ??? */
|
||||
|
||||
g = x * x;
|
||||
x += x * g * POLYNOM3(g, p) / POLYNOM4(g, q);
|
||||
if (n > 1) x = -x;
|
||||
x += a[n];
|
||||
return neg ? -x : x;
|
||||
}
|
||||
|
|
|
@ -11,76 +11,32 @@
|
|||
#include <pc_err.h>
|
||||
extern _trp();
|
||||
|
||||
static double
|
||||
floor(x)
|
||||
double x;
|
||||
{
|
||||
extern double _fif();
|
||||
double val;
|
||||
|
||||
return _fif(x, 1.0, &val) < 0 ? val - 1.0 : val ;
|
||||
/* this also works if _fif always returns a positive
|
||||
fractional part
|
||||
*/
|
||||
}
|
||||
|
||||
static double
|
||||
ldexp(fl,exp)
|
||||
double fl;
|
||||
int exp;
|
||||
{
|
||||
extern double _fef();
|
||||
int sign = 1;
|
||||
int currexp;
|
||||
|
||||
if (fl<0) {
|
||||
fl = -fl;
|
||||
sign = -1;
|
||||
}
|
||||
fl = _fef(fl,&currexp);
|
||||
exp += currexp;
|
||||
if (exp > 0) {
|
||||
while (exp>30) {
|
||||
fl *= (double) (1L << 30);
|
||||
exp -= 30;
|
||||
}
|
||||
fl *= (double) (1L << exp);
|
||||
}
|
||||
else {
|
||||
while (exp<-30) {
|
||||
fl /= (double) (1L << 30);
|
||||
exp += 30;
|
||||
}
|
||||
fl /= (double) (1L << -exp);
|
||||
}
|
||||
return sign * fl;
|
||||
}
|
||||
|
||||
double
|
||||
_exp(x)
|
||||
double x;
|
||||
{
|
||||
/* 2**x = (Q(x*x)+x*P(x*x))/(Q(x*x)-x*P(x*x)) for x in [0,0.5] */
|
||||
/* Hart & Cheney #1069 */
|
||||
/* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*/
|
||||
|
||||
static double p[3] = {
|
||||
0.2080384346694663001443843411e+07,
|
||||
0.3028697169744036299076048876e+05,
|
||||
0.6061485330061080841615584556e+02
|
||||
static double p[] = {
|
||||
0.25000000000000000000e+0,
|
||||
0.75753180159422776666e-2,
|
||||
0.31555192765684646356e-4
|
||||
};
|
||||
|
||||
static double q[4] = {
|
||||
0.6002720360238832528230907598e+07,
|
||||
0.3277251518082914423057964422e+06,
|
||||
0.1749287689093076403844945335e+04,
|
||||
0.1000000000000000000000000000e+01
|
||||
static double q[] = {
|
||||
0.50000000000000000000e+0,
|
||||
0.56817302698551221787e-1,
|
||||
0.63121894374398503557e-3,
|
||||
0.75104028399870046114e-6
|
||||
};
|
||||
double xn, g;
|
||||
int n;
|
||||
int negative = x < 0;
|
||||
|
||||
int negative = x < 0;
|
||||
int ipart, large = 0;
|
||||
double xsqr, xPxx, Qxx;
|
||||
|
||||
if (x < M_LN_MIN_D) {
|
||||
if (x <= M_LN_MIN_D) {
|
||||
return M_MIN_D;
|
||||
}
|
||||
if (x >= M_LN_MAX_D) {
|
||||
|
@ -90,23 +46,24 @@ _exp(x)
|
|||
}
|
||||
return M_MAX_D;
|
||||
}
|
||||
if (negative) x = -x;
|
||||
|
||||
/* ??? avoid underflow ??? */
|
||||
|
||||
n = x * M_LOG2E + 0.5; /* 1/ln(2) = log2(e), 0.5 added for rounding */
|
||||
xn = n;
|
||||
{
|
||||
double x1 = (long) x;
|
||||
double x2 = x - x1;
|
||||
|
||||
g = ((x1-xn*0.693359375)+x2) - xn*(-2.1219444005469058277e-4);
|
||||
}
|
||||
if (negative) {
|
||||
x = -x;
|
||||
g = -g;
|
||||
n = -n;
|
||||
}
|
||||
x /= M_LN2;
|
||||
ipart = floor(x);
|
||||
x -= ipart;
|
||||
if (x > 0.5) {
|
||||
large = 1;
|
||||
x -= 0.5;
|
||||
}
|
||||
xsqr = x * x;
|
||||
xPxx = x * POLYNOM2(xsqr, p);
|
||||
Qxx = POLYNOM3(xsqr, q);
|
||||
x = (Qxx + xPxx) / (Qxx - xPxx);
|
||||
if (large) x *= M_SQRT2;
|
||||
x = ldexp(x, ipart);
|
||||
if (negative) return 1.0/x;
|
||||
return x;
|
||||
xn = g * g;
|
||||
x = g * POLYNOM2(xn, p);
|
||||
n += 1;
|
||||
return (ldexp(0.5 + x/(POLYNOM3(xn, q) - x), n));
|
||||
}
|
||||
|
|
|
@ -6,38 +6,34 @@
|
|||
*/
|
||||
|
||||
/* $Header$ */
|
||||
|
||||
#define __NO_DEFS
|
||||
#include <math.h>
|
||||
#include <pc_err.h>
|
||||
extern _trp();
|
||||
|
||||
double
|
||||
_log(x)
|
||||
double x;
|
||||
double x;
|
||||
{
|
||||
/* log(x) = z*P(z*z)/Q(z*z), z = (x-1)/(x+1), x in [1/sqrt(2), sqrt(2)]
|
||||
/* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*/
|
||||
/* Hart & Cheney #2707 */
|
||||
|
||||
static double p[5] = {
|
||||
0.7504094990777122217455611007e+02,
|
||||
-0.1345669115050430235318253537e+03,
|
||||
0.7413719213248602512779336470e+02,
|
||||
-0.1277249755012330819984385000e+02,
|
||||
0.3327108381087686938144000000e+00
|
||||
static double a[] = {
|
||||
-0.64124943423745581147e2,
|
||||
0.16383943563021534222e2,
|
||||
-0.78956112887491257267e0
|
||||
};
|
||||
static double b[] = {
|
||||
-0.76949932108494879777e3,
|
||||
0.31203222091924532844e3,
|
||||
-0.35667977739034646171e2,
|
||||
1.0
|
||||
};
|
||||
|
||||
static double q[5] = {
|
||||
0.3752047495388561108727775374e+02,
|
||||
-0.7979028073715004879439951583e+02,
|
||||
0.5616126132118257292058560360e+02,
|
||||
-0.1450868091858082685362325000e+02,
|
||||
0.1000000000000000000000000000e+01
|
||||
};
|
||||
|
||||
extern double _fef();
|
||||
double z, zsqr;
|
||||
int exponent;
|
||||
extern double _fef();
|
||||
double znum, zden, z, w;
|
||||
int exponent;
|
||||
|
||||
if (x <= 0) {
|
||||
_trp(ELOG);
|
||||
|
@ -45,11 +41,18 @@ _log(x)
|
|||
}
|
||||
|
||||
x = _fef(x, &exponent);
|
||||
while (x < M_1_SQRT2) {
|
||||
x += x;
|
||||
if (x > M_1_SQRT2) {
|
||||
znum = (x - 0.5) - 0.5;
|
||||
zden = x * 0.5 + 0.5;
|
||||
}
|
||||
else {
|
||||
znum = x - 0.5;
|
||||
zden = znum * 0.5 + 0.5;
|
||||
exponent--;
|
||||
}
|
||||
z = (x-1)/(x+1);
|
||||
zsqr = z*z;
|
||||
return z * POLYNOM4(zsqr, p) / POLYNOM4(zsqr, q) + exponent * M_LN2;
|
||||
z = znum/zden; w = z * z;
|
||||
x = z + z * w * (POLYNOM2(w,a)/POLYNOM3(w,b));
|
||||
z = exponent;
|
||||
x += z * (-2.121944400546905827679e-4);
|
||||
return x + z * 0.693359375;
|
||||
}
|
||||
|
|
|
@ -11,90 +11,74 @@
|
|||
#include <math.h>
|
||||
|
||||
static double
|
||||
sinus(x, quadrant)
|
||||
sinus(x, cos_flag)
|
||||
double x;
|
||||
{
|
||||
/* sin(0.5*pi*x) = x * P(x*x)/Q(x*x) for x in [0,1] */
|
||||
/* Hart & Cheney # 3374 */
|
||||
/* Algorithm and coefficients from:
|
||||
"Software manual for the elementary functions"
|
||||
by W.J. Cody and W. Waite, Prentice-Hall, 1980
|
||||
*/
|
||||
|
||||
static double p[6] = {
|
||||
0.4857791909822798473837058825e+10,
|
||||
-0.1808816670894030772075877725e+10,
|
||||
0.1724314784722489597789244188e+09,
|
||||
-0.6351331748520454245913645971e+07,
|
||||
0.1002087631419532326179108883e+06,
|
||||
-0.5830988897678192576148973679e+03
|
||||
static double r[] = {
|
||||
-0.16666666666666665052e+0,
|
||||
0.83333333333331650314e-2,
|
||||
-0.19841269841201840457e-3,
|
||||
0.27557319210152756119e-5,
|
||||
-0.25052106798274584544e-7,
|
||||
0.16058936490371589114e-9,
|
||||
-0.76429178068910467734e-12,
|
||||
0.27204790957888846175e-14
|
||||
};
|
||||
|
||||
static double q[6] = {
|
||||
0.3092566379840468199410228418e+10,
|
||||
0.1202384907680254190870913060e+09,
|
||||
0.2321427631602460953669856368e+07,
|
||||
0.2848331644063908832127222835e+05,
|
||||
0.2287602116741682420054505174e+03,
|
||||
0.1000000000000000000000000000e+01
|
||||
};
|
||||
|
||||
double xsqr;
|
||||
int t;
|
||||
double xsqr;
|
||||
double y;
|
||||
int neg = 0;
|
||||
|
||||
if (x < 0) {
|
||||
quadrant += 2;
|
||||
x = -x;
|
||||
neg = 1;
|
||||
}
|
||||
if (M_PI_2 - x == M_PI_2) {
|
||||
switch(quadrant) {
|
||||
case 0:
|
||||
case 2:
|
||||
return 0.0;
|
||||
case 1:
|
||||
return 1.0;
|
||||
case 3:
|
||||
return -1.0;
|
||||
}
|
||||
if (cos_flag) {
|
||||
neg = 0;
|
||||
y = M_PI_2 + x;
|
||||
}
|
||||
if (x >= M_2PI) {
|
||||
if (x <= 0x7fffffff) {
|
||||
/* Use extended precision to calculate reduced argument.
|
||||
Split 2pi in 2 parts a1 and a2, of which the first only
|
||||
uses some bits of the mantissa, so that n * a1 is
|
||||
exactly representable, where n is the integer part of
|
||||
x/pi.
|
||||
Here we used 12 bits of the mantissa for a1.
|
||||
Also split x in integer part x1 and fraction part x2.
|
||||
We then compute x-n*2pi as ((x1 - n*a1) + x2) - n*a2.
|
||||
*/
|
||||
#define A1 6.2822265625
|
||||
#define A2 0.00095874467958647692528676655900576
|
||||
double n = (long) (x / M_2PI);
|
||||
double x1 = (long) x;
|
||||
double x2 = x - x1;
|
||||
x = x1 - n * A1;
|
||||
else y = x;
|
||||
|
||||
/* ??? avoid loss of significance, if y is too large, error ??? */
|
||||
|
||||
y = y * M_1_PI + 0.5;
|
||||
|
||||
/* Use extended precision to calculate reduced argument.
|
||||
Here we used 12 bits of the mantissa for a1.
|
||||
Also split x in integer part x1 and fraction part x2.
|
||||
*/
|
||||
#define A1 3.1416015625
|
||||
#define A2 -8.908910206761537356617e-6
|
||||
{
|
||||
double x1, x2;
|
||||
extern double _fif();
|
||||
|
||||
_fif(y, 1.0, &y);
|
||||
if (_fif(y, 0.5, &x1)) neg = !neg;
|
||||
if (cos_flag) y -= 0.5;
|
||||
x2 = _fif(x, 1.0, &x1);
|
||||
x = x1 - y * A1;
|
||||
x += x2;
|
||||
x -= n * A2;
|
||||
x -= y * A2;
|
||||
#undef A1
|
||||
#undef A2
|
||||
}
|
||||
else {
|
||||
extern double _fif();
|
||||
double dummy;
|
||||
}
|
||||
|
||||
x = _fif(x/M_2PI, 1.0, &dummy) * M_2PI;
|
||||
}
|
||||
}
|
||||
x /= M_PI_2;
|
||||
t = x;
|
||||
x -= t;
|
||||
quadrant = (quadrant + (int)(t % 4)) % 4;
|
||||
if (quadrant & 01) {
|
||||
x = 1 - x;
|
||||
}
|
||||
if (quadrant > 1) {
|
||||
if (x < 0) {
|
||||
neg = !neg;
|
||||
x = -x;
|
||||
}
|
||||
xsqr = x * x;
|
||||
x = x * POLYNOM5(xsqr, p) / POLYNOM5(xsqr, q);
|
||||
return x;
|
||||
|
||||
/* ??? avoid underflow ??? */
|
||||
|
||||
y = x * x;
|
||||
x += x * y * POLYNOM7(y, r);
|
||||
return neg ? -x : x;
|
||||
}
|
||||
|
||||
double
|
||||
|
|
Loading…
Reference in a new issue