ack/lang/cem/libcc.ansi/math/tan.c

123 lines
2.6 KiB
C
Raw Normal View History

1989-05-10 16:08:14 +00:00
/*
* (c) copyright 1988 by the Vrije Universiteit, Amsterdam, The Netherlands.
* See the copyright notice in the ACK home directory, in the file "Copyright".
*
* Author: Ceriel J.H. Jacobs
*/
/* $Header$ */
#include <errno.h>
#include <math.h>
#include "localmath.h"
double
tan(double x)
{
/* First reduce range to [0, pi/4].
Then use approximation tan(x*pi/4) = x * P(x*x)/Q(x*x).
Hart & Cheney # 4288
Use: tan(x) = 1/tan(pi/2 - x)
tan(-x) = -tan(x)
tan(x+k*pi) = tan(x)
*/
static double p[5] = {
-0.5712939549476836914932149599e+10,
0.4946855977542506692946040594e+09,
-0.9429037070546336747758930844e+07,
0.5282725819868891894772108334e+05,
-0.6983913274721550913090621370e+02
};
static double q[6] = {
-0.7273940551075393257142652672e+10,
0.2125497341858248436051062591e+10,
-0.8000791217568674135274814656e+08,
0.8232855955751828560307269007e+06,
-0.2396576810261093558391373322e+04,
0.1000000000000000000000000000e+01
};
int negative = x < 0;
double tmp, tmp1, tmp2;
double xsq;
int invert = 0;
int ip;
if (negative) x = -x;
/* first reduce to [0, pi) */
if (x >= M_PI) {
if (x <= 0x7fffffff) {
/* Use extended precision to calculate reduced argument.
Split pi in 2 parts a1 and a2, of which the first only
uses some bits of the mantissa, so that n * a1 is
exactly representable, where n is the integer part of
x/pi.
Here we used 12 bits of the mantissa for a1.
Also split x in integer part x1 and fraction part x2.
We then compute x-n*pi as ((x1 - n*a1) + x2) - n*a2.
*/
#define A1 3.14111328125
#define A2 0.00047937233979323846264338327950288
double n = (long) (x / M_PI);
double x1 = (long) x;
double x2 = x - x1;
x = x1 - n * A1;
x += x2;
x -= n * A2;
#undef A1
#undef A2
}
else {
x = modf(x/M_PI, &tmp) * M_PI;
}
}
/* because the approximation uses x*pi/4, we reverse this */
x /= M_PI_4;
ip = (int) x;
x -= ip;
switch(ip) {
case 0:
/* [0,pi/4] */
break;
case 1:
/* [pi/4, pi/2]
tan(x+pi/4) = 1/tan(pi/2 - (x+pi/4)) = 1/tan(pi/4 - x)
*/
invert = 1;
x = 1.0 - x;
break;
case 2:
/* [pi/2, 3pi/4]
tan(x+pi/2) = tan((x+pi/2)-pi) = -tan(pi/2 - x) =
-1/tan(x)
*/
negative = ! negative;
invert = 1;
break;
case 3:
/* [3pi/4, pi)
tan(x+3pi/4) = tan(x-pi/4) = - tan(pi/4-x)
*/
x = 1.0 - x;
negative = ! negative;
break;
}
xsq = x * x;
tmp1 = x*POLYNOM4(xsq, p);
tmp2 = POLYNOM5(xsq, q);
tmp = tmp1 / tmp2;
if (invert) {
if (tmp == 0.0) {
errno = ERANGE;
tmp = HUGE_VAL;
}
else tmp = tmp2 / tmp1;
}
return negative ? -tmp : tmp;
}