ack/lang/m2/libm2/Mathlib.mod

444 lines
8.6 KiB
Modula-2
Raw Normal View History

IMPLEMENTATION MODULE Mathlib;
1987-06-23 17:12:42 +00:00
FROM EM IMPORT FIF, FEF;
(* From: Handbook of Mathematical Functions
Edited by M. Abramowitz and I.A. Stegun
National Bureau of Standards
Applied Mathematics Series 55
*)
CONST
OneRadianInDegrees = 57.295779513082320876798155D;
OneDegreeInRadians = 0.017453292519943295769237D;
(* basic functions *)
PROCEDURE pow(x: REAL; i: INTEGER): REAL;
BEGIN
RETURN SHORT(longpow(LONG(x), i));
END pow;
PROCEDURE longpow(x: LONGREAL; i: INTEGER): LONGREAL;
VAR
val: LONGREAL;
ri: LONGREAL;
BEGIN
ri := FLOATD(i);
IF x < 0.0D THEN
val := longexp(longln(-x) * ri);
IF ODD(i) THEN RETURN -val;
ELSE RETURN val;
END;
ELSIF x = 0.0D THEN
RETURN 0.0D;
ELSE
RETURN longexp(longln(x) * ri);
END;
END longpow;
PROCEDURE sqrt(x: REAL): REAL;
BEGIN
RETURN SHORT(longsqrt(LONG(x)));
END sqrt;
PROCEDURE longsqrt(x: LONGREAL): LONGREAL;
VAR
temp: LONGREAL;
exp, i: INTEGER;
BEGIN
IF x <= 0.0D THEN
IF x < 0.0D THEN
(* ??? *)
;
END;
RETURN 0.0D;
END;
temp := FEF(x,exp);
(*
* NOTE
* this wont work on 1's comp
*)
IF ODD(exp) THEN
temp := 2.0D * temp;
DEC(exp);
END;
temp := 0.5D*(1.0D + temp);
WHILE exp > 28 DO
temp := temp * 16384.0D;
exp := exp - 28;
END;
WHILE exp < -28 DO
temp := temp / 16384.0D;
exp := exp + 28;
END;
WHILE exp >= 2 DO
temp := temp * 2.0D;
exp := exp - 2;
END;
WHILE exp <= -2 DO
temp := temp / 2.0D;
exp := exp + 2;
END;
FOR i := 0 TO 4 DO
temp := 0.5D*(temp + x/temp);
END;
RETURN temp;
END longsqrt;
PROCEDURE exp(x: REAL): REAL;
BEGIN
RETURN SHORT(longexp(LONG(x)));
END exp;
PROCEDURE longexp(x: LONGREAL): LONGREAL;
(*
* n = floor(x / ln2), d = x / ln2 - n
* exp(x) = exp((x / ln2) * ln2) = exp((n + d) * ln2) =
* exp(n * ln2) * exp(d * ln2) = 2 ** n * exp(d * ln2)
*)
CONST
a1 = -0.9999999995D;
a2 = 0.4999999206D;
a3 = -0.1666653019D;
a4 = 0.0416573475D;
a5 = -0.0083013598D;
a6 = 0.0013298820D;
a7 = -0.0001413161D;
VAR
neg: BOOLEAN;
polval: LONGREAL;
n: LONGREAL;
n1 : INTEGER;
BEGIN
neg := x < 0.0D;
IF neg THEN
x := -x;
END;
x := FIF(x, 1.0D/LONG(ln2), n) * LONG(ln2);
polval := 1.0D /(1.0D + x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7)))))));
n1 := TRUNCD(n + 0.5D);
WHILE n1 >= 16 DO
polval := polval * 65536.0D;
n1 := n1 - 16;
END;
WHILE n1 > 0 DO
polval := polval * 2.0D;
DEC(n1);
END;
IF neg THEN RETURN 1.0D/polval; END;
RETURN polval;
END longexp;
PROCEDURE ln(x: REAL): REAL; (* natural log *)
BEGIN
RETURN SHORT(longln(LONG(x)));
END ln;
PROCEDURE longln(x: LONGREAL): LONGREAL; (* natural log *)
CONST
a1 = 0.9999964239D;
a2 = -0.4998741238D;
a3 = 0.3317990258D;
a4 = -0.2407338084D;
a5 = 0.1676540711D;
a6 = -0.0953293897D;
a7 = 0.0360884937D;
a8 = -0.0064535442D;
VAR
exp: INTEGER;
polval: LONGREAL;
BEGIN
IF x <= 0.0D THEN
(* ??? *)
RETURN 0.0D;
END;
x := FEF(x, exp);
WHILE x < 1.0D DO
x := x + x;
DEC(exp);
END;
x := x - 1.0D;
polval := x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*(a7+a8*x)))))));
RETURN polval + FLOATD(exp) * LONG(ln2);
END longln;
PROCEDURE log(x: REAL): REAL; (* log with base 10 *)
BEGIN
RETURN SHORT(longlog(LONG(x)));
END log;
PROCEDURE longlog(x: LONGREAL): LONGREAL; (* log with base 10 *)
BEGIN
RETURN longln(x)/LONG(ln10);
END longlog;
(* trigonometric functions; arguments in radians *)
PROCEDURE sin(x: REAL): REAL;
BEGIN
RETURN SHORT(longsin(LONG(x)));
END sin;
PROCEDURE longsin(x: LONGREAL): LONGREAL;
CONST
a2 = -0.1666666664D;
a4 = 0.0083333315D;
a6 = -0.0001984090D;
a8 = 0.0000027526D;
a10 = -0.0000000239D;
VAR
xsqr: LONGREAL;
neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi);
IF x >= LONG(pi) THEN
neg := NOT neg;
x := x - LONG(pi);
END;
IF x > LONG(halfpi) THEN
x := LONG(pi) - x;
END;
xsqr := x * x;
x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10)))));
IF neg THEN RETURN -x; END;
RETURN x;
END longsin;
PROCEDURE cos(x: REAL): REAL;
BEGIN
RETURN SHORT(longcos(LONG(x)));
END cos;
PROCEDURE longcos(x: LONGREAL): LONGREAL;
CONST
a2 = -0.4999999963D;
a4 = 0.0416666418D;
a6 = -0.0013888397D;
a8 = 0.0000247609D;
a10 = -0.0000002605D;
VAR
xsqr: LONGREAL;
neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN x := -x; END;
x := FIF(x, 1.0D / LONG(twicepi), (* dummy *) xsqr) * LONG(twicepi);
IF x >= LONG(pi) THEN
x := LONG(twicepi) - x;
END;
IF x > LONG(halfpi) THEN
neg := NOT neg;
x := LONG(pi) - x;
END;
xsqr := x * x;
x := 1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*a10))));
IF neg THEN RETURN -x; END;
RETURN x;
END longcos;
PROCEDURE tan(x: REAL): REAL;
BEGIN
RETURN SHORT(longtan(LONG(x)));
END tan;
PROCEDURE longtan(x: LONGREAL): LONGREAL;
VAR cosinus: LONGREAL;
BEGIN
cosinus := longcos(x);
IF cosinus = 0.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longsin(x)/cosinus;
END longtan;
PROCEDURE arcsin(x: REAL): REAL;
BEGIN
RETURN SHORT(longarcsin(LONG(x)));
END arcsin;
PROCEDURE longarcsin(x: LONGREAL): LONGREAL;
CONST
a0 = 1.5707963050D;
a1 = -0.2145988016D;
a2 = 0.0889789874D;
a3 = -0.0501743046D;
a4 = 0.0308918810D;
a5 = -0.0170881256D;
a6 = 0.0066700901D;
a7 = -0.0012624911D;
BEGIN
IF x < 0.0D THEN x := -x; END;
IF x > 1.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN LONG(halfpi) -
longsqrt(1.0D - x)*(a0+x*(a1+x*(a2+x*(a3+x*(a4+x*(a5+x*(a6+x*a7)))))));
END longarcsin;
PROCEDURE arccos(x: REAL): REAL;
BEGIN
RETURN SHORT(longarccos(LONG(x)));
END arccos;
PROCEDURE longarccos(x: LONGREAL): LONGREAL;
BEGIN
RETURN LONG(halfpi) - longarcsin(x);
END longarccos;
PROCEDURE arctan(x: REAL): REAL;
BEGIN
RETURN SHORT(longarctan(LONG(x)));
END arctan;
PROCEDURE longarctan(x: LONGREAL): LONGREAL;
CONST
a2 = -0.3333314528D;
a4 = 0.1999355085D;
a6 = -0.1420889944D;
a8 = 0.1065626393D;
a10 = -0.0752896400D;
a12 = 0.0429096318D;
a14 = -0.0161657367D;
a16 = 0.0028662257D;
VAR
xsqr: LONGREAL;
rev: BOOLEAN;
neg: BOOLEAN;
BEGIN
rev := FALSE;
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
IF x > 1.0D THEN
rev := TRUE;
x := 1.0D / x;
END;
xsqr := x * x;
x := x * (1.0D + xsqr*(a2+xsqr*(a4+xsqr*(a6+xsqr*(a8+xsqr*(a10+xsqr*(a12+xsqr*(a14+xsqr*a16))))))));
IF rev THEN
x := LONG(quartpi) - x;
END;
IF neg THEN RETURN -x; END;
RETURN x;
END longarctan;
(* hyperbolic functions *)
PROCEDURE sinh(x: REAL): REAL;
BEGIN
RETURN SHORT(longsinh(LONG(x)));
END sinh;
PROCEDURE longsinh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx - 1.0D/expx)/2.0D;
END longsinh;
PROCEDURE cosh(x: REAL): REAL;
BEGIN
RETURN SHORT(longcosh(LONG(x)));
END cosh;
PROCEDURE longcosh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx + 1.0D/expx)/2.0D;
END longcosh;
PROCEDURE tanh(x: REAL): REAL;
BEGIN
RETURN SHORT(longtanh(LONG(x)));
END tanh;
PROCEDURE longtanh(x: LONGREAL): LONGREAL;
VAR expx: LONGREAL;
BEGIN
expx := longexp(x);
RETURN (expx - 1.0D/expx) / (expx + 1.0D/expx);
END longtanh;
PROCEDURE arcsinh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarcsinh(LONG(x)));
END arcsinh;
PROCEDURE longarcsinh(x: LONGREAL): LONGREAL;
VAR neg: BOOLEAN;
BEGIN
neg := FALSE;
IF x < 0.0D THEN
neg := TRUE;
x := -x;
END;
x := longln(x + longsqrt(x*x+1.0D));
IF neg THEN RETURN -x; END;
RETURN x;
END longarcsinh;
PROCEDURE arccosh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarccosh(LONG(x)));
END arccosh;
PROCEDURE longarccosh(x: LONGREAL): LONGREAL;
BEGIN
IF x < 1.0D THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longln(x + longsqrt(x*x - 1.0D));
END longarccosh;
PROCEDURE arctanh(x: REAL): REAL;
BEGIN
RETURN SHORT(longarctanh(LONG(x)));
END arctanh;
PROCEDURE longarctanh(x: LONGREAL): LONGREAL;
BEGIN
IF (x <= -1.0D) OR (x >= 1.0D) THEN
(* ??? *)
RETURN 0.0D;
END;
RETURN longln((1.0D + x)/(1.0D - x)) / 2.0D;
END longarctanh;
(* conversions *)
PROCEDURE RadianToDegree(x: REAL): REAL;
BEGIN
RETURN SHORT(longRadianToDegree(LONG(x)));
END RadianToDegree;
PROCEDURE longRadianToDegree(x: LONGREAL): LONGREAL;
BEGIN
RETURN x * OneRadianInDegrees;
END longRadianToDegree;
PROCEDURE DegreeToRadian(x: REAL): REAL;
BEGIN
RETURN SHORT(longDegreeToRadian(LONG(x)));
END DegreeToRadian;
PROCEDURE longDegreeToRadian(x: LONGREAL): LONGREAL;
BEGIN
RETURN x * OneDegreeInRadians;
END longDegreeToRadian;
END Mathlib.